Langsung ke konten utama

Soal Cerita Aplikasi Turunan

 

Berikut ini akan kita bahas soal aplikasi turunan dalam kehidupan sehari-hari. aplikasi soal turunan menggunakan konsep titik balik maksimum dan titik balik minimum untuk menentukan harga maksimum dan minimum.

CONTOH 1:
1. Sebuah partikel bergerak sepanjang garis koordinat mendatar sedemikian, sehingga posisinya pada saat t ditentukan dengan persamaan s=f(t)=t3+9t2+24t-36, t≥0 dengan s diukur dalam meter dan t dalam detik.
a. Carilah kecepatan dan percepatan partikel sebagai fungsi waktu t.
b. Kapan kecepatan partikel 0?
c. kapan percepatan partikel 0?
JAWAB :

a. Dari persamaan posisi s=f(t)=t3+9t2+24t-36

untuk mencari kecepatan v menggunakan turunan pertama.
Kecepatan V(t)=ds/dt=3t2+18t+24
Dan mencari percepatan a menggunakan turunan ke dua.
Percepatan a(t)=dv/dt=6t^2+18
b. Kecepatan partikel 0 pada saat :

Jadi kecepatan partikel 0 pada saat t= -4 atau t=-2
c. Percepatan partikel 0 pada saat :

Lihat Video Untuk Contoh 1 no.1



Aplikasi soal turunan contoh 1 no 1

2. Jumlah dua buah bilangan adalah 50. Carilah hasil kali dua bilangan itu yang terbesar :

JAWAB :
Misal dua bilangan itu adalah x dan y, maka jumlah kedua bilangan itu :
x+y=50 ↔y=50-x
Dan hasil kedua bilangan tersebut :

Titik stasioner fungsi P(x) tercapai bilanP' (x)=0 , maka :

Maka y=50-x=50-25=25
Jadi hasil kali kedua bilangan itu yang terbesar adalah
P=xy=25.25=625
Atau bisa menggunakan persamaan
P(x)= 50x-x2
P(25)= 50.25-252=625

Lihat Video untuk contoh 1 no.2

https://youtu.be/u7h652QrSog
Aplikasi soal turunan contoh 1 no 2

3. Diberikan bilangan x dan y yang memenuhi hubungan x+3y=12. Hitunglah nilai minimum dari x2+y2.

JAWAB :

Turunan pertama dan kedua dari fungsi P(x) adalah dan P"(x)=16/9 , maka Titik stasioner dari fungsi P(x) bila P^' (x)=0 :

Karena P"(-3/2)=-3/2>0 maka berdasarkan uji turunan kedua, fungsi P(x) merupakan titik balik minimum.
Nilai balik minimumnya adalah :

Lihat Video Untuk contoh 1 no.3

https://youtu.be/dnvuVtI6uj0
Aplikasi soal turunan contoh 1 no 3

4. Persegi panjang manakah yang mempunyai luas terbesar, jika kelilingnya 900 cm ?

JAWAB :
Misalkan sisi-sisi persegi panjang tersebut adalah x cm dan y cm, dan luasnya L(x), maka :
Keliling persegi panjang =900 cm
2(x+y)=900↔y=450-x
Luas persegi panjang adalah L(x)=xy , maka :

Turunan pertama dan kedua dari fungsi L(x)adalah L^' (x)=450-2x dan L"(x)=-2
Titik stasioner dari fungsi L(x)dicapai bila L^' (x)=0, maka :

Karena L"(225)=-2<0 , maka berdasarkan uji turunan kedua, fungsi L(x)mencapai nilai balik maksimum dan nilai balik maksimumnya adalah :
x =225→L(x)=450x-x2
L(225)=450.225-2252=50.625

Lihat Video unruk contoh 1 no.4

https://youtu.be/a6QLjfh66f8
Aplikasi soal turunan contoh no 4

5. Dari selembar karton berbentuk persegi panjang yang berukuran panjang 15 cm dan lebar 10 cm akan dibuat kotak tanpa tutup, dengan cara menggunting empat buah persegi di setiap pojok karton, seperti gambar dibawah ini.

Volume kotak terbesar adalah.
JAWAB :
Setelah dilipat

misalkan x cm adalah sisi persegi yang harus digunting dan V adalah volume kotak yang dihasilkan, maka :

Turuna pertama dan kedua fungsi V(x) adalah V' (x)=12x2-88x+96 dan V"(x)=24x-88
Titik stasioner dari fungsi V(x) dicapai bila V' (x)=0

Nilai stasioner untuk x=4/3 adalah f(4/3)=4(4/3 )3-50(4/3 )2+150(4/3)=4456/27
Nilai stasioner untuk x=6 adalah f(6)=4(6)3-50(6)2+150(6)=-36
Maka nilai balik maksimumnya adalah f(4/3)=4456/27 . Dan dapat disimpulkan kotak mempunyai volume maksimum 4456/27 cm3

6. Jika suatu proyek akan diselesaikan dalam x hari, maka biaya proyek per hari menjadi (2x+4800/x-80)juta rupiah. Tentukan biaya minimum dari proyek tersebut !

JAWAB :
Biaya proyek per hari :
b(x)=(2x+4800/x-80) juta rupiah
Maka biaya proyek dalam x hari adalah :

Turunan pertama dan kedua dari B(x) adalah B' (x)=4x-80 dan B"(x)=4 .
Nilai stasioner fungsi B(x) dicapai bila B' (x)=0, maka :

Karena untuk x=20,maka B"(20)=4>0 menurut uji turunan kedua mempunyai titik balik minimum dan nilai balik minimumnya adalah B(20)=2(20)2+4800-80(20)=4000.
Jadi biaya proyek minimum adalah 4000 Juta rupiah

Lihat video untuk contoh 6

https://youtu.be/_aCjux56wkY
Aplikasi soal turunan contoh 1 no 6
  1. Sebuah roket ditembakkan vertikal keatas. Dalam waktu t detik tinggi h meter ditentukan dengan persamaan h(t) = 480t – 4t2. Carilah nilai t yang menyebabkan h menjadi maksimum dan nilai h maksimum tersebut.
    JAWAB :
    Turunan pertama dan kedua dari h terhadap t adalah h’(t) = 480 – 8t dan h”(t) = - 8
    Titik stasioner dari h(t) dicapai bila h’(t) = 0, maka :
    480 – 8t = 0
    t = 60
    Karena untuk t = 60,maka h”(t) = - 8 < 0 menurut uji turunan kedua mempunyai titik balik maksimum dan nilai balik maksimumnya adalah
    h(60) = 480(60) – 4(60)2 = 14400 meter

Lihat video untuk contoh 7

https://youtu.be/gFjEzztn8MA
Aplikasi soal turunan contoh 1 no 7

Komentar

Postingan populer dari blog ini

SOAL dan PEMBAHASAN Persamaan Parabola-Ulangan Harian Tipe 1

Persamaan parabola adalah bagian dari kerucut yang diiris (irisan kerucut) yang salah satu hasil irisannya membentuk persamaan parabola. artikel kali ini saya akan membahas soal-soal yang sering keluar saat ulangan harian di sekolah beserta video penjelasannya yang terdiri dari 15 soal. Soal pembahasan persamaan parabola dibahas dengan konsep yang mudah dimengerti, jadi saya harapkan simak semua soal yang saya berikan dan pelajari perlahan-lahan agar kamu bisa dengan mudah menghadapi ulangan harian disekolah. so, langsung disimaqk aja ya pembahasan soalnya. 1. Persamaan parabola yang mempunyai focus (2,0) adalah …. A. x^2=8y B. x^2=-8y C. y^2=8y D. y^2=-8y E. x^2=4y JAWAB : C 2. Persamaan parabola yang mempunyai focus (0,-2) adalah …. A. x 2 =8y B. x 2 =-8y C. y 2 =8y D. y 2 =-8y E. x 2 =4y JAWAB : B 3. Persamaan parabola dibawah ini adalah… persamaan parabola A. x 2 =12y B. x 2 =-12y C. y 2 =12y D. y 2 =-12y E. x 2 =9y ...

Penerapan Aturan Sinus Dan Cosinus

Aplikasi penerapan rumus aturan sinus dan kosinus dalam kehidupan sehari-hari banyak dipakai dalam dunia kelautan, seperti menghitung jarak kapal jika diketahui sudut antara kapal atau mencari sudut antara dua kapal jika diketahui jarak masing-masing kapal. Berikut ini saya sajikan contoh soal aplikasi aturan sinus dan kosinus. CONTOH 1: Dua kapal A dan B meninggalkan pelabuhan P bersama-sama. Kapal A berlayar dengan arah 030 o dan kecepatan 30 km/jam, sedangkan kapal B berlayar dengan arah 090 o dan kecepatan 45 km/jam. Jika kedua kapal berlayar selama 2 jam, maka jarak kedua kapal tersebut adalah? JAWAB : buatlah gambar lintasan kapal tersebut dengan jarak, kecepatan kapal dan sudut yang diketahui pada soal Jarak PA = vA.t = 30 ×2 = 60 km Jarak PB = vB.t = 45 ×2 = 90 km α=∠APB=90 o – 30 o = 60 o Gunakan aturan cosinus untuk mencari jarak AB Sebuah kapal berlayar dari pelabuhan A ke pelabuhan B sejauh 40 mil dengan arah 30o dan kemudian berpu...

CARA CEPAT HIMPUNAN-MATEMATIKA KUANTITATIF

DIAGRAM VENN Diagram venn digunakan untuk mempermudah suatu himpunan dikelompokkan, berikut adalah berbagai macam operasi himpunan menggunakan diagram venn sebagai materi dasar untuk menyelesaikan soal matematika kuantitatif. Diagram Venn Dua Himpunan a. A∩B b. A∪B c. B - A d. A - B e. (A∪B)-(A∩B) f. A c CONTOH SOAL Daerah yang diarsir pada diagram venn berikut adalah A. A∩B∩C B. A∪B∪C C. (B∩C)∪A D. (B∩C)-A E. A-(B∩C)' JAWAB : D 2. Daerah yang diarsir pada diagram venn berikut adalah .... A. (A∩C)-B B. A∪B∪C C. (B∩C)∪A’ D. (A∩B)-C E. (A∩C)-B JAWAB : E 3. Daerah yang diarsir pada diagram venn berikut adalah A. (A∩B)-C B. A-B-C C. (B∩C)∪A’ D. B-(A∩B E. B-A-C JAWAB : D 4. Daerah yang diarsir pada diagram venn berikut adalah .... A. (A∩B)-C B. A-B-C C. B-(A∩B) D. B-(A∪B) E. B-A-C JAWAB : E 5. Daerah yang diarsir pada diagram venn berikut adalah.... A. (A∩B)-C ...