Langsung ke konten utama

Fungsi Naik Dan Fungsi Turun

 

Definisi Fungsi Naik dan Fungsi Turun bisa kamu lihat pada pernyataan definisi dibawah ini :

Misalkan fungsi f didefinisikan pada interval I.
1. Fungsi f dikatakan naik pada I jika hanya jika untuk setiap dua titik sembarang x1,x2 I dengan x1<x2 mengakibatkan f(x1 )<f(x2 ) .

2. Fungsi f dikatakan turun pada I jika hanya jika untuk setiap dua titik sembarang x1,x2 I dengan x1<x2 mengakibatkan f(x1 )>f(x2 ) .


3. Fungsi f dikatakan tak turun pada I jika hanya jika untuk setiap dua titik sembarang x1,x2 I dengan x1<x2 mengakibatkan f(x1 )≤f(x2 ).


4. Fungsi f dikatakan tak naik pada I jika hanya jika untuk setiap dua titik sembarang x1,x2 I dengan x1<x2 mengakibatkan f(x1 )≥f(x2 ).

CONTOH 1:
1. Buktikan bahwa :
a. Fungsi y=f(x)=3x+1 adalah naik untuk x∈R
b. Fungsi y=f(x)=3-x adalah turun untuk x∈R
JAWAB :

a. Fungsi f dikatakan naik pada I jika hanya jika untuk setiap dua titik sembarang x1,x2 I dengan x1<x2 mengakibatkan f(x1 )<f(x2 )
Karena x1<x2 maka x1-x2<0 , jadi :

Oleh karena itu f(x1 )<f(x2 ) atau y=f(x)=3x+1 adalah fungsi naik untuk x∈R (terbukti)

b. Fungsi f dikatakan naik pada I jika hanya jika untuk setiap dua titik sembarang x1,x2 I dengan x1<x2 mengakibatkan f(x1 )>f(x2 )

Oleh karena itu f(x1 )>f(x2 ) atau y=f(x)=3-x adalah fungsi turun untuk x∈R (terbukti)

Lihat Video untuk contoh 1 no. 1



Buktikan fungsi naik atau turun contoh 1 no 1

2. Carilah interval-interval x agar fungsi f(x)=2x2 + 4x + 5 merupakan fungsi

a. Naik
b. Turun
JAWAB :
a. Syarat fungsi f(x) naik adalah f(x)’ > 0 , maka :

b. Syarat fungsi f(x) turun adalah f(x)’ < 0 , maka :

Lihat video untuk contoh 1 no.2



Mencari interval fungsi naik turun contoh 1 no 2

3. Carilah interval-interval x agar fungsi f(x)  – 2x3 – 15x2 – 36x + 7    merupakan fungsi

a. Naik

b. Turun

 JAWAB :

a. Syarat fungsi f(x) =  – 2x3 – 15x2 – 36x + 7      naik adalah  , maka f(x)'>0 :

   Maka intervalnya adalah

Maka interval agar fungsi f(x)  – 2x3 – 15x2 – 36x + 7  naik adalah – 3 < x < – 2

b. Syarat fungsi f(x) = – 2x3 – 15x2 – 36x + 7 turun adalah f(x)'<0 , maka :

Maka intervalnya adalah

Maka interval agar fungsi f(x)  – 2x3 – 15x2 – 36x + 7  turun adalah x < – 3 atau  x > – 2

Lihat Video untuk contoh 1 no. 3



Interval Fungsi turun atau naik dengan turunan contoh 1 no.3

CONTOH 2:
1. Tunjukkanlah bahwa fungsi f(x) = 9x3 – 18x2 + 12x – 2 tidak pernah turun untuk setiap x∈R .
JAWAB:

Maka fungsi f(x) = 9x3 – 18x2 + 12x – 2 tidak pernah turun untuk setiap x∈R.

2. Tunjukkanlah bahwa fungsi f(x)=-1/3 x3-2x2-4x+6 tidak pernah naik untuk setiap x∈R.

JAWAB:

Maka fungsi f(x)=-1/3 x3-2x2-4x+6 tidak pernah naik untuk setiap x∈R

Lihat Video untuk contoh 2



Komentar

Postingan populer dari blog ini

FUNGSI INVERS

Fungsi Invers Jika fungsi f:A→B, dangan f={(x,y)|y=f(x),x∈A,y∈B}, maka relasi g:B→A, dengan g=(y,x)|x=g(x),x∈A,y∈B} dinamakan invers fungsi f ditulis f -1 Jika f -1 merupakan fungsi, maka f -1 dinamakan fungsi invers dan jika f -1 bukan merupakan fungsi maka f -1 dinamakan invers f. Jika g ada, g dinyatakan dengan f -1 , sehingga f -1 (y)=x↔f(x)=y. Rumus Cepat Invers : CONTOH 1: Nyatakan invers dari fungsi f dalam himpunan pasangan terurut f = { (1, 3), (2, 5), (3, 7) } JAWAB : Untuk fungsi invers domain (x) ditukar menjadi kodomain (y), sehingga invers fungsi f adalah : f -1 = {(3, 1), (5, 2), (7, 5)} 2. Tentukan invers dari fungsi dibawah ini : JAWAB : *Lihat cara cepatnya divideo 3. Tentukan invers dari fungsi dibawah ini : JAWAB : Lihat Video untuk fungsi invers contoh 1 Cara Cepat Fungsi Invers Contoh 1 CONTOH 2: Tentukan invers dari fungsi : a. f(x) = ...

Gradien Garis Singgung Pada Kurva Dengan Turunan

Mencari Gradien Menggunakan Turunan untuk mencari gradien pada persaman linier bisa menggunakan rumus y = mx + C , maka gradiennya adalah m . Bagaimana jika gradien yang dicari berasal dari fungsi kuadrat , suku banyak (polinomial), fungsi akar atau fungsi pecahan ? Cara mencari gradien tersebut adalah menggunakan turunan pertama dari suatu fungsi. Bagaimana caranya? marikita lihat penjelasan berikut ini. Gradien Garis Singgung CONTOH 1: Carilah gradien garis singgung dari fungsi y = 3x 2 – 4x + 1 pada x = 1 Carilah gradien garis singgung dari fungsi y = x 3 – 2x 2 pada absis 3 JAWAB : 3. Carilah gradien garis singgung dari fungsi y=√(x+2) dengan ordinat 2 JAWAB : Lihat video untuk contoh 1                 Mencari gradien pada kurva dengan turunan contoh 1 CONTOH 2: 1. Gradien garis singgung kurva y=x 2 +kx+5 pada...

Soal dan Pembahasan Vektor- Ulangan Harian Tipe 1

Pembahasan soal vektor kali ini terdiri atas 20 soal, kamu bisa lihat soal dibawah atau langsung simak video penjelasannya Soal dan Pembahasan Vektor Tipe soal vektor yang disajikan sangat variatif dan menggunakan indikator soal vektor yang sering keluar atau diujikan. Berikut indikator materi vektor SMA yang disajikan pada soal : Konsep dasar arah vektor menjumlahkan vektor panjang vektor perbandingan vektor vektor segaris (kolinier) vektor satuan sudut antara dua vektor proyeksi vektor ortogonal Proyeksi skalar vektor ortogonal Mari kita lihat soal apa saja yang bisa kamu selesaikan dan kamu pelajari Ulangan Harian Vektor Tipe 1 SOAL 1 Perhatikan gambar dibawah ini Maka vektor a + c + b - e = ... A. -d B. 2d C. d D. -2d E. 0 JAWAB : B SOAL 2 Diberikan vektor u =2i +3j , v =i -j . Nilai dari 2u +3v =⋯. A. 7i +3j B. 7i +9j C. 3i -3j D. 3i +9j E. 4i +6j JAWAB : A SOAL 3 Diketahui titik A(4, - 1), B(2, 5). jar...