Langsung ke konten utama

Gradien Garis Normal

Garis normal adalah garis yang tegak lurus dengan garis singgung, sehingga gradien yang terbentuk oleh garis normal juga tegak lurus dengan gradien garis singgung (lihat gambar dibawah)

GRADIEN GARIS SINGGUNG PADA KURVA DENGAN TURUNAN

gradien garis norma

Perhatikan kurva diatas, garis g menyinggung kurvaf(x)=ax2+bx+c di titik A(x,y) dan garis normal n adalah garis yang tegak lurus dengan garis singgung g .
Jika gradien garis g adalah mg = m , maka gradien garis normal yang tegak lurus dengan garis g adalah :

rumus gradien yang tegak lurus

CONTOH 1:
1. Carilah gradien garis normal dari persamaan y=x2+4x+3 dan melalui titik x=-3
JAWAB :

Gradien garis normalnya adalah

  1. Gradien garis normal kurva y = 4/x2 adalah 1. Tentukan titik yang melalui garis normal tersebut .
    JAWAB :

Karena mn = 1 , maka gradien garis singgungnya adalah

Maka titk y dicari dengan substitusi x =2

Sehingga titik yang melalui garis normal tersebut adalah (2, 1)

Lihat video untuk contoh 1


                                        Gradien garis normal contoh 1

CONTOH 2:
Gradien garis normal kurva y=x2-bx+1/2 adalah 2 dan melewati ordinat 0 Tentukan nilai b.
JAWAB :
Diketahui gradien garis normal mn=2 maka gradien garis singgungnya adalah

Jadi nilai b=3/2 atau b = - 3/2

Lihat video untuk contoh 2



                  Mencari variabel b jika gradien garis normal diketahui contoh 2

Komentar

Postingan populer dari blog ini

PEMBAHASAN SOAL SIMAK UI 2020

Nomor 1 : Diketahui x 1 dan x 2 dengan x 1 <x 2 adalah akar-akar persamaan kuadrat ax 2 +bx+c=0. Jika x 1 +x 2 =3 dan , maka persamaan kuadrat baru yang jumlah akarnya  (-x 1 ) x2 +(x 2 ) -x1 dan hasil kali akarnya -x 1 x2 .x 2 -x1 adalah …. JAWAB : B VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 Persamaan Kuadrat No 1 No. 2 Jika  dan  memenuhi , maka nilai x 1 .x 2 adalah …. A. 6 B. 7 C. 8 D. 9 E.10 JAWAB : C Matematika dasar Simak UI 2020 Logaritma Eksponen No 2 No. 3 Diketahui f(x)+3g -1 (x)=x 2 +x-18 dan f(x)+2g -1 (x)=x 2 -18. Jika f -1 bernilai positif, maka g -1 (2)+f -1 (2)=…. A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : B Simak UI 2020 Matematika Dasar Fungsi Invers No 3 No. 4 A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : A VIDEO PEMBAHASAN Simak UI 2020 Matematika dasar Determinan Matriks No 4 No. 5 A. 2 B. 3 C. 4 D. 5 E. 6 JAWAB : E VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 akar Ekspone...

PEMBAHASAN SOAL UTBK MATEMATIKA SAINTEK 2021

Assalamualaikum sudah taukah kamu soal Matematika Saintek 2021 materinya apa aja ?. Soal dan Pembahasan Matematika Saintek UTBK 2021 terdiri dari materi , Baris deret aritmetika, Persamaan Logaritma, Persamaan Eksponen,Bunga Majemuk, Trigonometri, Transformasi Geometri, Limit Trigonometri, Fungsi, Vektor, Dimensi 3. Mudah-mudahan tetap semangat ya dan konsisten belajar untuk persiapan UTBK selanjutnya. semua tergantung sama diri kalian sendiri apakah kamu mau bekerja keras atau hanya menggerutu kesulitan. Selalu persiapkan untuk menghadapi soal UTBK SBMPTN 2021 karena kita tidak tahu tipe soal apa yang akan keluar dan materi apa yang akan di keluarkan, tetapi perinsip dasar dan konsep materinya tetap sama oleh karena itu belajarlah dengan konsep, jangan menghafal rumus. Berikut saya sajikan soal dan pembahasan menggunakan video tutorial. pelajari secara perlahan, jangan terburu-buru untuk memahami. Jika tidak mengerti lihat materi matematika dasar yang saya sajikan di blog ini...

PELUANG DISKRIT

RUMUS PELUANG DISKRIT rumus peluang diskrit Keterangan : x = banyaknya kejadian n = ruang sampel p = peluang kejadian CONTOH 1 , no. 1 Peluang seorang bayi tertular penyakit disuatu desa adalah 0,1. Jika terdapat 5 bayi. Berapakah peluang 2 bayi akan tertular ? JAWAB : Misal peluang bayi tertular p = 0,1, maka peluang bayi tidak tertular adalah q = 1 – 0,1 = 0,9. Sehingga : Jadi peluang 2 bayi yang tertular adalah 0,0729 Lihat Video Contoh 1 no. 1 peluang diskrit contoh 1 no 1 CONTOH 1, No. 2 Kepala bagian produksi PT LUMINBOX melaporkan bahwa rata - rata produksi lampu LED yang rusak setiap kali produksi adalah sebesar 20 %. Jika dari total produksi tersebut diambil secara acak sebanyak 4 buah lampu LED, berapakah perhitungan dengan nilai probabilitas 2 lampu LED rusak ? JAWAB : Menggunakan Binom Misal lampu peluang lampu rusak p = 20 % = 0,2, maka peluang lampu tidak rusak adalah q = 1 – 0,2 = 0,8. Sehingga : Lihat Video Penjela...