Langsung ke konten utama

Menggambar Grafik Fungsi Aljabar

Menggambar grafik fungsi aljabar sangat penting dipelajari, untuk apa? untuk membantu menyelesaikan materi matematika lainnya seperti materi Integral, yaitu mencari luas yang dibatasi oleh kurva dan volume benda putar. Jika kita tidak bisa menggambar grafik kurva aljabar maka menyelesaikan soal luas dan volume benda putar yang dibatasi kurva akan mendapat kendala bahkan akan salah menentukan batas untuk integral tentu yang akan kita gunakan sebagai perhitungannya.

Dalam membuat grafik/sketsa kurva suatu fungsi aljabar menggunakan turunan pertama dan turunan ke dua untuk mentukan stasioner, titik balik maksimum atau titik balik minimum, dan titik belok yang sebelumnya sudah kita pelajari di materi titik stasioner , titik ekstrim, kecekungan dan titik belok

Untuk lebih jelasnya lihat contoh soal melukis grafik fungsi aljabar dibawah ini.

CONTOH 1:
1. Gambarlah sketsa kurva y=f(x)=4x3-8x2-3x+9 .
JAWAB :
Langkah-langkahnya adalah :
a. Menentukan titik potong di sumbu Y
Jika kurva f memotong sumbu y maka x = 0
y=4.03-8(0)2-3(0)+9=9 ,jadi titik potongnya di sumbu y adalah (0, 9)
b. Menentukan titik potong di sumbu X
Jika kurva f memotong sumbu x maka y = 0

This image has an empty alt attribute; its file name is bandicam-2021-05-25-12-52-08-067.jpg

Jadi koordinat titik potong kurva f dengan sumbu x adalah (-1,0) dan (3/2)

c. Cari titik ekstrim menggunakan turunan pertama dari kurva y=f(x)=4x3-8x2-3x+9
Turunan pertamanya adalah f' (x)=12x2-16x-3 , dan titik stasioner dapat dicapai bila f' (x)= 0 , maka

This image has an empty alt attribute; its file name is bandicam-2021-05-25-12-54-16-251.jpg

Titik ekstrimnya untuk x=3/2 adalah :

This image has an empty alt attribute; its file name is image-42.png

Titik ekstrimnya untuk   adalah :

This image has an empty alt attribute; its file name is image-43.png

Maka titik balik minimumnya adalah  

This image has an empty alt attribute; its file name is image-44.png

dan titik balik maksimumnya

This image has an empty alt attribute; its file name is image-45.png

d. Gambarlah semua titik yang telah dicari seperti  , 

This image has an empty alt attribute; its file name is image-46.png

sehingga setelah dihubungkan titik-titiknya  menjadi kurva y=f(x)=4x^3-8x^2-3x+9 dibawah  ini

This image has an empty alt attribute; its file name is bandicam-2021-05-25-13-00-24-911.jpg

Lihat video untuk contoh 1Menggambar Skema Grafik Menggunakan Turunan Contoh 1

Komentar

Postingan populer dari blog ini

PEMBAHASAN SOAL SIMAK UI 2020

Nomor 1 : Diketahui x 1 dan x 2 dengan x 1 <x 2 adalah akar-akar persamaan kuadrat ax 2 +bx+c=0. Jika x 1 +x 2 =3 dan , maka persamaan kuadrat baru yang jumlah akarnya  (-x 1 ) x2 +(x 2 ) -x1 dan hasil kali akarnya -x 1 x2 .x 2 -x1 adalah …. JAWAB : B VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 Persamaan Kuadrat No 1 No. 2 Jika  dan  memenuhi , maka nilai x 1 .x 2 adalah …. A. 6 B. 7 C. 8 D. 9 E.10 JAWAB : C Matematika dasar Simak UI 2020 Logaritma Eksponen No 2 No. 3 Diketahui f(x)+3g -1 (x)=x 2 +x-18 dan f(x)+2g -1 (x)=x 2 -18. Jika f -1 bernilai positif, maka g -1 (2)+f -1 (2)=…. A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : B Simak UI 2020 Matematika Dasar Fungsi Invers No 3 No. 4 A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : A VIDEO PEMBAHASAN Simak UI 2020 Matematika dasar Determinan Matriks No 4 No. 5 A. 2 B. 3 C. 4 D. 5 E. 6 JAWAB : E VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 akar Eksponen No 5 Diketahui

Persamaan Garis Singgung Dan Garis Normal

Persamaan garis singgung dan garis normal adalah, garis singgung merupakan garis yang menyinggung kurva di satu titik dan garis normal adalah garis yang tegak lurus dengan garis singgung di titik yang sama dengan garis singgung pada kurva. Untuk lebih jelasnya lihat gambar kurva garis singgung dan garis normal dibawah ini. garis singgung dan garis normal Perhatikan kurva diatas, garis g menyinggung kurvaf(x)= a x 2 + b x+ c di titik A(x,y) dan garis normal n adalah garis yang tegak lurus dengan garis singgung g . Jika gradien garis g adalah m g = m , maka gradien garis normal yang tegak lurus dengan garis g adalah Maka persamaan garis singgung kurva menggunakan persamaan y-y 1 =m g (x-x 1 ) dan persamaan garis normalnya adalah y-y 1 =m n (x-x 1 ) CONTOH 1: Carilah persamaan garis singgung dan garis normal kurva f(x)=x 2 +4x+5 melalui titik x=1 JAWAB : Cari gradien m garis singgung kurva, sebagai berikut : f(x)=x 2 +4x+5 m = f’(x) = 2x + 4 m = 2.1 + 4 = 6 M

Gradien Garis Singgung Pada Kurva Dengan Turunan

Mencari Gradien Menggunakan Turunan untuk mencari gradien pada persaman linier bisa menggunakan rumus y = mx + C , maka gradiennya adalah m . Bagaimana jika gradien yang dicari berasal dari fungsi kuadrat , suku banyak (polinomial), fungsi akar atau fungsi pecahan ? Cara mencari gradien tersebut adalah menggunakan turunan pertama dari suatu fungsi. Bagaimana caranya? marikita lihat penjelasan berikut ini. Gradien Garis Singgung CONTOH 1: Carilah gradien garis singgung dari fungsi y = 3x 2 – 4x + 1 pada x = 1 Carilah gradien garis singgung dari fungsi y = x 3 – 2x 2 pada absis 3 JAWAB : 3. Carilah gradien garis singgung dari fungsi y=√(x+2) dengan ordinat 2 JAWAB : Lihat video untuk contoh 1                 Mencari gradien pada kurva dengan turunan contoh 1 CONTOH 2: 1. Gradien garis singgung kurva y=x 2 +kx+5 pada absis -1 adalah 2. Tentukan nilai k JA