Langsung ke konten utama

Soal Dan Pembahasan Turunan Fungsi Aljabar-Tipe 1

Haiii, asalamualaikum. bagi kamu yang mau persiapan ulangan harian turunan fungsi aljabar, nih saya kasih 15 tipe soal yang sering keluar di ulangan harian. Soalnya sangat variatif lho dari bentuk turunan fungsi aljabar polinomial sampai turunan bentuk akar.

Semua soal disini ada pembahasannya lho dalam bentuk video, kalau kamu mau langsung dipelajari yuk lihat video dibawah ini :



soal dan pembahasan turunan fungsi aljabar

Tapi kalau kamu mau langsung ngrjain dulu sambil latihan bisa lihat soal dibawah ini dan ada kunci jawabannya untuk mengecek hasil jawaban kamu.

SOAL 1

Turunan pertama dari y=3x4-2x3+4x-6 adalah ....
A. 12x3+6x2+4
B. 12x3-6x2+4
C. 3x3+2x2+4
D. 3x3+6x2+4
E. 3x3-2x2+4

SOAL 2

Turunan pertama dari y=(2x+3)(x-1) adalah ....
A. y'=4x+1
B. y'=4x-1
C. y'=2x+1
D. y'=x+1
E. y'=4x+3

SOAL 3

Turunan pertama dari fungsi f(x)=4∛x adalah ....

soal dan pembahasan turunan fungsi aljabar

SOAL 4

Turunan pertama dari fungsi aljabar f(x)=4(5x2-4x)6 adalah ….
A. (120x-96)(5x2-4x)5
B. (120x-96)(5x2-4x)4
C. (240x-96)(5x2-4x)5
D. (240x-48)(5x2-4x)4
E. (240x-96)(x2-4x)5

SOAL 5

Turunan pertama dari y=(3x+1)(2x-3)4 adalah ....
A. y'=(2x-3)4+8(3x+1)(2x-3)3
B. y'=3(2x-3)3+4(3x+1)(2x-3)3
C. y'=3(2x-3)4+4(3x+1)(2x-3)3
D. y'=(2x-3)4+2(3x+1)(2x-3)3
E. y'=3(2x-3)4+8(3x+1)(2x-3)3

SOAL 6

Turunan pertama dari fungsi g(x)=(3x-4)/(4x-3) adalah ....

soal dan pembahasan turunan fungsi aljabar

SOAL 7

Jika f(x)=(x2-4)/((2x-4)3 ), maka nilai f' (3)=⋯.
A. – 24
B. – 20
C. – 12
D. –8
E. – 4

SOAL 8

Diketahui f(x)=(-4x2+1)^3 dan g(x)=∛(x2 ), jika h(x)=f(x).g(x). Nilai f' (1)=⋯.
A. 298
B. 189
C. 198
D. 98
E. 89

SOAL 9

Turunan ke-2 dari fungsi f(x)=2x3+4x2-2x+1 adalah ….
A. 12x+2
B. 12x+4
C. 6x+4
D. 12x+8
E. 6x+8

SOAL 10

Diketahui fungsi f(x)=3∛(x2-1). Jika f' adalah turunan fungsi f, maka f'(3) = ... .
A. 0
B. 1
C. 3/2
D. – 1
E. – 3/1

SOAL 11

Diketahui suatu fungsi y=(x-1)/x, bentuk dy/dx= ... .
A. 1/x2
B. -1/x2
C. 1/x-2
D. 2/x2
E. x2

SOAL 12

Jika f(x)=(x3-2x+2)/(x2-x+2) dan f'(0)=-a/b, maka nilai a.b = … .
A. 0
B. – 1
C. – 2
D. 1
E. 2

SOAL 13

f' (x)adalah turunan pertama dari fungsi f(x)=(2x2+x-2)4 . Jika f' (a)=20, maka nilai 2a +3 = … .
A. 17
B. 43
C. 54
D. 70
E. 83

SOAL 14

Diketahui fungsi u(x)=(x+1)2, v(x)=(2x-1)3, dan w(x)=(x-2)4. Jika f(x)=u(x).v(x).w(x). Nilai dari f' (1)=⋯.
A. 44
B. 28
C. 24
D. 18
E. 12

SOAL 15

JAWABAN
1B6B11A16 
2A7A12C17 
3D8C13B18 
4C9D14E19 
5E10C15A20 

Komentar

Postingan populer dari blog ini

PEMBAHASAN SOAL SIMAK UI 2020

Nomor 1 : Diketahui x 1 dan x 2 dengan x 1 <x 2 adalah akar-akar persamaan kuadrat ax 2 +bx+c=0. Jika x 1 +x 2 =3 dan , maka persamaan kuadrat baru yang jumlah akarnya  (-x 1 ) x2 +(x 2 ) -x1 dan hasil kali akarnya -x 1 x2 .x 2 -x1 adalah …. JAWAB : B VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 Persamaan Kuadrat No 1 No. 2 Jika  dan  memenuhi , maka nilai x 1 .x 2 adalah …. A. 6 B. 7 C. 8 D. 9 E.10 JAWAB : C Matematika dasar Simak UI 2020 Logaritma Eksponen No 2 No. 3 Diketahui f(x)+3g -1 (x)=x 2 +x-18 dan f(x)+2g -1 (x)=x 2 -18. Jika f -1 bernilai positif, maka g -1 (2)+f -1 (2)=…. A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : B Simak UI 2020 Matematika Dasar Fungsi Invers No 3 No. 4 A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : A VIDEO PEMBAHASAN Simak UI 2020 Matematika dasar Determinan Matriks No 4 No. 5 A. 2 B. 3 C. 4 D. 5 E. 6 JAWAB : E VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 akar Eksponen No 5 Diketahui

Persamaan Garis Singgung Dan Garis Normal

Persamaan garis singgung dan garis normal adalah, garis singgung merupakan garis yang menyinggung kurva di satu titik dan garis normal adalah garis yang tegak lurus dengan garis singgung di titik yang sama dengan garis singgung pada kurva. Untuk lebih jelasnya lihat gambar kurva garis singgung dan garis normal dibawah ini. garis singgung dan garis normal Perhatikan kurva diatas, garis g menyinggung kurvaf(x)= a x 2 + b x+ c di titik A(x,y) dan garis normal n adalah garis yang tegak lurus dengan garis singgung g . Jika gradien garis g adalah m g = m , maka gradien garis normal yang tegak lurus dengan garis g adalah Maka persamaan garis singgung kurva menggunakan persamaan y-y 1 =m g (x-x 1 ) dan persamaan garis normalnya adalah y-y 1 =m n (x-x 1 ) CONTOH 1: Carilah persamaan garis singgung dan garis normal kurva f(x)=x 2 +4x+5 melalui titik x=1 JAWAB : Cari gradien m garis singgung kurva, sebagai berikut : f(x)=x 2 +4x+5 m = f’(x) = 2x + 4 m = 2.1 + 4 = 6 M

Gradien Garis Singgung Pada Kurva Dengan Turunan

Mencari Gradien Menggunakan Turunan untuk mencari gradien pada persaman linier bisa menggunakan rumus y = mx + C , maka gradiennya adalah m . Bagaimana jika gradien yang dicari berasal dari fungsi kuadrat , suku banyak (polinomial), fungsi akar atau fungsi pecahan ? Cara mencari gradien tersebut adalah menggunakan turunan pertama dari suatu fungsi. Bagaimana caranya? marikita lihat penjelasan berikut ini. Gradien Garis Singgung CONTOH 1: Carilah gradien garis singgung dari fungsi y = 3x 2 – 4x + 1 pada x = 1 Carilah gradien garis singgung dari fungsi y = x 3 – 2x 2 pada absis 3 JAWAB : 3. Carilah gradien garis singgung dari fungsi y=√(x+2) dengan ordinat 2 JAWAB : Lihat video untuk contoh 1                 Mencari gradien pada kurva dengan turunan contoh 1 CONTOH 2: 1. Gradien garis singgung kurva y=x 2 +kx+5 pada absis -1 adalah 2. Tentukan nilai k JA