Langsung ke konten utama

Aplikasi Perbandingan Trigonometri

Dimateri sebelumnya kita sudah mengetahui perbandingan trigonometri pada segitiga siku-siku. Dengan memahami perbandingan trigonometri tersebut dapat diaplikasikan menyelesaikan soal cerita mencari tinggi sebuah menara, tinggi pohon, tinggi bendera ataupun tinggi sebuah gedung jika diketahui sudut deviasi atau sudut elivasi.

Permasalahan tersebut haruslah suatu permasalahan yang digambarkan menjadi sebuah segitiga siku-siku yang bisa dibuat perbandingan trigonometrinya. Berikut adalah contoh aplikasi penggunaan rumus perbandingan trigonometri untuk mencari tinggi dan jarak.

CONTOH 1:

Perhatikan gambar dibawah ini.

soal aplikasi perbandingan trigonometri

Jika tinggi pengamat 168 cm dan jarak pengamat dengan dasar pohon adalah 6√3 m, maka tentukan tinggi pohon
JAWAB :
Gunakan perbandingan trigonometri tan, karena yang diketahui samping dan yang di tanya depan sudut, maka :

Jadi tinggi pohon adalah 6 m + 168 cm = 7,68 m

Lihat video untuk contoh 1



Soal aplikasi perbandingan trigonometri contoh 1

CONTOH 2:

Pesawat helikopter terlihat oleh pengamat A dengan sudut elivasi 60o dan pengamat B dngan sudut elivasi 30o. Jarak AB = 40√3 m  . Hitung tinggi Helicopter tersebut (*Tinggi pengamat diabaikan)

JAWAB :

Buatlah ilustrasi segitiganya untuk mempermudah peenyelesaiannya

Untuk mencari tinggi Helicopter (t) kita butuh perbandingan tan dari kedua sudut A dan B.

Substitusi persamaan  (1) ke persamaan (2)

Jadi tinggi Helicopter adalah 60 m

Lihat Video untuk contoh 2



Komentar

Postingan populer dari blog ini

PEMBAHASAN SOAL SIMAK UI 2020

Nomor 1 : Diketahui x 1 dan x 2 dengan x 1 <x 2 adalah akar-akar persamaan kuadrat ax 2 +bx+c=0. Jika x 1 +x 2 =3 dan , maka persamaan kuadrat baru yang jumlah akarnya  (-x 1 ) x2 +(x 2 ) -x1 dan hasil kali akarnya -x 1 x2 .x 2 -x1 adalah …. JAWAB : B VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 Persamaan Kuadrat No 1 No. 2 Jika  dan  memenuhi , maka nilai x 1 .x 2 adalah …. A. 6 B. 7 C. 8 D. 9 E.10 JAWAB : C Matematika dasar Simak UI 2020 Logaritma Eksponen No 2 No. 3 Diketahui f(x)+3g -1 (x)=x 2 +x-18 dan f(x)+2g -1 (x)=x 2 -18. Jika f -1 bernilai positif, maka g -1 (2)+f -1 (2)=…. A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : B Simak UI 2020 Matematika Dasar Fungsi Invers No 3 No. 4 A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : A VIDEO PEMBAHASAN Simak UI 2020 Matematika dasar Determinan Matriks No 4 No. 5 A. 2 B. 3 C. 4 D. 5 E. 6 JAWAB : E VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 akar Eksponen No 5 Diketahui

Persamaan Garis Singgung Dan Garis Normal

Persamaan garis singgung dan garis normal adalah, garis singgung merupakan garis yang menyinggung kurva di satu titik dan garis normal adalah garis yang tegak lurus dengan garis singgung di titik yang sama dengan garis singgung pada kurva. Untuk lebih jelasnya lihat gambar kurva garis singgung dan garis normal dibawah ini. garis singgung dan garis normal Perhatikan kurva diatas, garis g menyinggung kurvaf(x)= a x 2 + b x+ c di titik A(x,y) dan garis normal n adalah garis yang tegak lurus dengan garis singgung g . Jika gradien garis g adalah m g = m , maka gradien garis normal yang tegak lurus dengan garis g adalah Maka persamaan garis singgung kurva menggunakan persamaan y-y 1 =m g (x-x 1 ) dan persamaan garis normalnya adalah y-y 1 =m n (x-x 1 ) CONTOH 1: Carilah persamaan garis singgung dan garis normal kurva f(x)=x 2 +4x+5 melalui titik x=1 JAWAB : Cari gradien m garis singgung kurva, sebagai berikut : f(x)=x 2 +4x+5 m = f’(x) = 2x + 4 m = 2.1 + 4 = 6 M

Gradien Garis Singgung Pada Kurva Dengan Turunan

Mencari Gradien Menggunakan Turunan untuk mencari gradien pada persaman linier bisa menggunakan rumus y = mx + C , maka gradiennya adalah m . Bagaimana jika gradien yang dicari berasal dari fungsi kuadrat , suku banyak (polinomial), fungsi akar atau fungsi pecahan ? Cara mencari gradien tersebut adalah menggunakan turunan pertama dari suatu fungsi. Bagaimana caranya? marikita lihat penjelasan berikut ini. Gradien Garis Singgung CONTOH 1: Carilah gradien garis singgung dari fungsi y = 3x 2 – 4x + 1 pada x = 1 Carilah gradien garis singgung dari fungsi y = x 3 – 2x 2 pada absis 3 JAWAB : 3. Carilah gradien garis singgung dari fungsi y=√(x+2) dengan ordinat 2 JAWAB : Lihat video untuk contoh 1                 Mencari gradien pada kurva dengan turunan contoh 1 CONTOH 2: 1. Gradien garis singgung kurva y=x 2 +kx+5 pada absis -1 adalah 2. Tentukan nilai k JA