Langsung ke konten utama

Coding dan Decoding

Coding dan Decoding adalah salah satu materi matematika kuantitatif (TPS) untuk persiapan Ujian UTBK, ujian STAN dan ujian PNS.

Coding dan decoding banyak orang menyebutnya bahasa panda dan ada juga bilang bahasa planet, karena susunan katanya aneh dan tidak bisa dibaca. Tetapi sebenarnya coding dan decoding bukan benar-benar bahasa panda hanya saja urutan abjad diganti dengan urutan yang berbeda.


Untuk lebih jelasnya mari kita lihat contoh-contoh bahasa pandanya :

CONTOH 1 :
Direction for question 1 to 2

Code XBTZCMHFDQVE
Original alphabet   DGSHNEOARMUT

STEAM =
A. TECHQ
B. TEMBQ
C. TECBD
D. TEMFQ
E. TEQAV

JAWAB : D

  1. DANGEROUS =
    A. XFCBMTHVT
    B. XFCBMDHVT
    C. XFCBMDZVT
    D. XFCEMDHVT
    E. XFCBMDHVT
    JAWAB : E

CONTOH 2 :

  1. Jika VKIC x VSLSJ = 21, maka NKOC x GORCV = ….
    A. 20
    B. 24
    C. 28
    D. 35
    E. 42
    JAWAB : A
    SATU = 4 huruf
    DUA = 3 huruf
    TIGA = 4 huruf
    EMPAT = 5 huruf
    LIMA = 4 huruf
    ENAM = 4 huruf
    TUJUH = 5 huruf
    DELAPAN = 7 huruf
    SEMBILAN = 8 huruf

VKIK = 4 huruf, jadi kemungkinan angka 1,3,4, dan 6
VSLSJ = 5 huruf, jadi kemungkinan angka 4 dan 7, maka angka yang mungkin dikali untuk menghasilkan nilai 21 adalah
VKIC x VSLSJ = 21
3 x 7 = 21
TIGA x TUJUH = 21
Maka codingnya berlaku,

Coding Alphabet

Berdasarkan code diatas ,maka
NKOC x GORCV = LIMA x EMPAT = 20

  1. Jika ZAH = ABI, maka RZST CHSZLAZG CTZ = ….
    A. 1
    B. 2
    C. 3
    D. 4
    E. 5
    JAWAB : C

CONTOH 3 :

  1. If TIL = 283, FACE = 6749, NOT = 512
    Then FACILITATION = ….
    A. 673838572815
    B. 674838272815
    C. 674838172815
    D. 674838472815
    E. 675838572815
    JAWAB : B
    Lhat huruf yang berwarna
    TIL = 283, FACE = 6749, NOT = 512, sehingga
    F A C I L I T A T I O N
    6 7 4 3 8 2 2 1 5 jadi jawabannya adalah B (tidak harus semuanya di coding)
  2. Jika FEMOUS = LKSUZY,
    THANOS = ZNGTUY, maka
    TERIOS = ….
    A. ZSXOUL
    B. ZKGOUK
    C. ZKXOUS
    D. ZKXOTY
    E. ZKXOUY
    JAWAB : E

Komentar

Postingan populer dari blog ini

FUNGSI INVERS

Fungsi Invers Jika fungsi f:A→B, dangan f={(x,y)|y=f(x),x∈A,y∈B}, maka relasi g:B→A, dengan g=(y,x)|x=g(x),x∈A,y∈B} dinamakan invers fungsi f ditulis f -1 Jika f -1 merupakan fungsi, maka f -1 dinamakan fungsi invers dan jika f -1 bukan merupakan fungsi maka f -1 dinamakan invers f. Jika g ada, g dinyatakan dengan f -1 , sehingga f -1 (y)=x↔f(x)=y. Rumus Cepat Invers : CONTOH 1: Nyatakan invers dari fungsi f dalam himpunan pasangan terurut f = { (1, 3), (2, 5), (3, 7) } JAWAB : Untuk fungsi invers domain (x) ditukar menjadi kodomain (y), sehingga invers fungsi f adalah : f -1 = {(3, 1), (5, 2), (7, 5)} 2. Tentukan invers dari fungsi dibawah ini : JAWAB : *Lihat cara cepatnya divideo 3. Tentukan invers dari fungsi dibawah ini : JAWAB : Lihat Video untuk fungsi invers contoh 1 Cara Cepat Fungsi Invers Contoh 1 CONTOH 2: Tentukan invers dari fungsi : a. f(x) = ...

Gradien Garis Singgung Pada Kurva Dengan Turunan

Mencari Gradien Menggunakan Turunan untuk mencari gradien pada persaman linier bisa menggunakan rumus y = mx + C , maka gradiennya adalah m . Bagaimana jika gradien yang dicari berasal dari fungsi kuadrat , suku banyak (polinomial), fungsi akar atau fungsi pecahan ? Cara mencari gradien tersebut adalah menggunakan turunan pertama dari suatu fungsi. Bagaimana caranya? marikita lihat penjelasan berikut ini. Gradien Garis Singgung CONTOH 1: Carilah gradien garis singgung dari fungsi y = 3x 2 – 4x + 1 pada x = 1 Carilah gradien garis singgung dari fungsi y = x 3 – 2x 2 pada absis 3 JAWAB : 3. Carilah gradien garis singgung dari fungsi y=√(x+2) dengan ordinat 2 JAWAB : Lihat video untuk contoh 1                 Mencari gradien pada kurva dengan turunan contoh 1 CONTOH 2: 1. Gradien garis singgung kurva y=x 2 +kx+5 pada...

Soal dan Pembahasan Vektor- Ulangan Harian Tipe 1

Pembahasan soal vektor kali ini terdiri atas 20 soal, kamu bisa lihat soal dibawah atau langsung simak video penjelasannya Soal dan Pembahasan Vektor Tipe soal vektor yang disajikan sangat variatif dan menggunakan indikator soal vektor yang sering keluar atau diujikan. Berikut indikator materi vektor SMA yang disajikan pada soal : Konsep dasar arah vektor menjumlahkan vektor panjang vektor perbandingan vektor vektor segaris (kolinier) vektor satuan sudut antara dua vektor proyeksi vektor ortogonal Proyeksi skalar vektor ortogonal Mari kita lihat soal apa saja yang bisa kamu selesaikan dan kamu pelajari Ulangan Harian Vektor Tipe 1 SOAL 1 Perhatikan gambar dibawah ini Maka vektor a + c + b - e = ... A. -d B. 2d C. d D. -2d E. 0 JAWAB : B SOAL 2 Diberikan vektor u =2i +3j , v =i -j . Nilai dari 2u +3v =⋯. A. 7i +3j B. 7i +9j C. 3i -3j D. 3i +9j E. 4i +6j JAWAB : A SOAL 3 Diketahui titik A(4, - 1), B(2, 5). jar...