Langsung ke konten utama

FUNGSI KOMPOSISI DAN INVERS

FUNGSI KOMPOSISI DAN INVERS

Tipe soal selanjutnya adalah menggabungkan fungsi komposisi dengan fungsi invers, seperti contoh 1 di bawah ini.

CONTOH 1 :

  1. Jika f(x - 3) = 4x + 7. Carilah fungsi f(x).

JAWAB :

Inves (x-3) menjadi (x+3) dan hasilnya substitusikan ke (4x+7), maka otomatis akan menjadi fungsi f(x).

2. Jika f(x + 2) = 2x2 + 5x - 6. Carilah fungsi f(x).

JAWAB :

Invers (x+2) menjadi (x-2) dan hasilnya substitusikan ke (2x2+5x-6), maka otomatis akan menjadi fungsi f(x).

3. Jika fungsi f(x) = 2x - 3 dan g(x) = x + 7. Buktikan (fog)-1 (x) = (g-1 o f-1 )(x)

JAWAB :

Terbukti (fog)-1 (x) = (g-1 o f-1 )(x)

Lihat video contoh 1



Fungsi Komposisi dan Invers contoh 1

CONTOH 2 :

  1. Jika (fog)(x) = 2x - 1, carilah fungsi g(x) = x + 4. Jika fungsi f(x) menggunakan metode invers.

JAWAB :

        Ruas kanan dan kiri di komposisi oleh fungsi g-1

Lihat video untuk contoh 2 no.1



Fungsi Komposisi dan Invers Contoh 2 no 1

Untuk contoh nomor 2 diketahui fungsi invers f-1 (x+3) dan fungsi komposisi (gof)(x), tetapi yang ditanyakan adalah fungsi g(x+2). untuk menyelesaikan soal tersebut, fungsi f-1 (x+3) diubah menjadi f(x+1) dengan cara di invers lagi. untuk lebih jelasnya lihat soal dibawah ini.

JAWAB :

Pertama kita harus cari fungsi f(x + 3)

Kemudian tentukan fungsi f(x) dan f(x + 3)

Maka kita komposisi fungsi f-1 (x) keruas kiri dan kanan untuk mendapatkan fungsi g(x)

Lihat video untuk contoh 2 no.2



Fungsi Komposisi dan invers Contoh 2 no 2

Komentar

Postingan populer dari blog ini

PEMBAHASAN SOAL SIMAK UI 2020

Nomor 1 : Diketahui x 1 dan x 2 dengan x 1 <x 2 adalah akar-akar persamaan kuadrat ax 2 +bx+c=0. Jika x 1 +x 2 =3 dan , maka persamaan kuadrat baru yang jumlah akarnya  (-x 1 ) x2 +(x 2 ) -x1 dan hasil kali akarnya -x 1 x2 .x 2 -x1 adalah …. JAWAB : B VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 Persamaan Kuadrat No 1 No. 2 Jika  dan  memenuhi , maka nilai x 1 .x 2 adalah …. A. 6 B. 7 C. 8 D. 9 E.10 JAWAB : C Matematika dasar Simak UI 2020 Logaritma Eksponen No 2 No. 3 Diketahui f(x)+3g -1 (x)=x 2 +x-18 dan f(x)+2g -1 (x)=x 2 -18. Jika f -1 bernilai positif, maka g -1 (2)+f -1 (2)=…. A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : B Simak UI 2020 Matematika Dasar Fungsi Invers No 3 No. 4 A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : A VIDEO PEMBAHASAN Simak UI 2020 Matematika dasar Determinan Matriks No 4 No. 5 A. 2 B. 3 C. 4 D. 5 E. 6 JAWAB : E VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 akar Eksponen No 5 Diketahui

Persamaan Garis Singgung Dan Garis Normal

Persamaan garis singgung dan garis normal adalah, garis singgung merupakan garis yang menyinggung kurva di satu titik dan garis normal adalah garis yang tegak lurus dengan garis singgung di titik yang sama dengan garis singgung pada kurva. Untuk lebih jelasnya lihat gambar kurva garis singgung dan garis normal dibawah ini. garis singgung dan garis normal Perhatikan kurva diatas, garis g menyinggung kurvaf(x)= a x 2 + b x+ c di titik A(x,y) dan garis normal n adalah garis yang tegak lurus dengan garis singgung g . Jika gradien garis g adalah m g = m , maka gradien garis normal yang tegak lurus dengan garis g adalah Maka persamaan garis singgung kurva menggunakan persamaan y-y 1 =m g (x-x 1 ) dan persamaan garis normalnya adalah y-y 1 =m n (x-x 1 ) CONTOH 1: Carilah persamaan garis singgung dan garis normal kurva f(x)=x 2 +4x+5 melalui titik x=1 JAWAB : Cari gradien m garis singgung kurva, sebagai berikut : f(x)=x 2 +4x+5 m = f’(x) = 2x + 4 m = 2.1 + 4 = 6 M

Gradien Garis Singgung Pada Kurva Dengan Turunan

Mencari Gradien Menggunakan Turunan untuk mencari gradien pada persaman linier bisa menggunakan rumus y = mx + C , maka gradiennya adalah m . Bagaimana jika gradien yang dicari berasal dari fungsi kuadrat , suku banyak (polinomial), fungsi akar atau fungsi pecahan ? Cara mencari gradien tersebut adalah menggunakan turunan pertama dari suatu fungsi. Bagaimana caranya? marikita lihat penjelasan berikut ini. Gradien Garis Singgung CONTOH 1: Carilah gradien garis singgung dari fungsi y = 3x 2 – 4x + 1 pada x = 1 Carilah gradien garis singgung dari fungsi y = x 3 – 2x 2 pada absis 3 JAWAB : 3. Carilah gradien garis singgung dari fungsi y=√(x+2) dengan ordinat 2 JAWAB : Lihat video untuk contoh 1                 Mencari gradien pada kurva dengan turunan contoh 1 CONTOH 2: 1. Gradien garis singgung kurva y=x 2 +kx+5 pada absis -1 adalah 2. Tentukan nilai k JA