Langsung ke konten utama

Perbandingan Trigonometri Sudut Segitiga Siku-Siku

Dibawah ini adalah rumus perbandingan trigonometri menggunakan segitiga siku-siku. Rumus ini amat sangat penting dan mendasar, jika tidak hafal konsepnya, maka selanjutnya kamu bakalan pucet menyelesaikan soal-soal yang menggunakan konsep perbandingan trigonometri.

Rumus-rumus Perbandingan Trigonometri

CONTOH 1 :

Tentukan keenam perbandingan trigonometri sudutnya menggunakan rumus perbandingan trigonometri di atas.

JAWAB :

Berdasarkan rumus perbandingan trigonometri diatas, maka :

Lihat video untuk contoh 1



Perbandingan Trigonometri 1

CONTOH 2:
Tentukan nilai semua perbandingan trigonometri dari segitiga dibawah ini

JAWAB :

Lihat video untuk contoh 2



Perbandingan Trigonometri 2

CONTOH 3:
Segitiga ABC dengan siku-siku di A, mempunyai panjang AB=AC=3 cm. Jika adalah sudut yang dibentuk antara garis AC dan BC, tentukan nilai sinα,cosα dan tanα .
JAWAB :

Buatlah segitiga ABC dengan nilai-nilai yang sudah diketahui pada soal

Cari panjang BC dengan phytagoras, kemudian cari perbandingannya menggunakan rumus perbandingan trigonometri.

Lihat Video untuk contoh 3



Perbandingan Trigonometri 3

CONTOH 4:
Diberikan ∆ABC siku-siku di C dan A sudut lancip. Jika sinA=4/5 , tentukan nilai cosA dan tanA dan
JAWAB :
Sudut A lancip berarti berada dikuadran I jadi semua nilai perbandingan adalah positif

Nilai AB=5cm diperoleh dari phytagoras. Maka :

Lihat video untuk contoh 4



Perbandingan trigonometri Sudut Lancip

CONTOH 5:
Jika sinA=4/5 dan A adalah sudut tumpul , tentukan nilai cosA dan tanA
JAWAB :
Sudut A tumpul berarti berada di kuadran II, dimana cosA dan tanA bernilai negatif maka AB menjadi negatif.

Buatlah segitiga seperti di bawah ini untuk mempermudah

.

Lihat video untuk contoh 5



Perbandingan Trigonometri Sudut Tumpul

CONTOH 6:
Jika sinA=15/17 , cosB=-3/5 , A sudut lancip dan B sudut tumpul ,tentukan nilai sinAcosB+cosAsinB
JAWAB :
Buatlah segitiga siku-siku dengan nilai yang sudah diketahui pada soal untuk mempermudah.

Jadi nilai sinAcosB+cosAsinB = -13/85

Lihat video untuk contoh 6



Perbandingan trigonometri sudut lancip dan tumpul contoh 6

CONTOH 7:
Diberikan ∆ABC siku-siku di A, jika sudut B=30° , panjang AB=8√3 cm. Tentukan unsur-unsur lain dari segitiga tersebut
JAWAB :

Buatlah segitiga dan nilai yang sudah diketahui pada soal agar mempermudah pengerjaannya.

Unsur lain yang ditanyakan adalah panjang AC dan BC . Untuk mencari ACdigunakan perbandingan trigonometri tan . Maka :

Untuk mencari BC bisa menggunakan phytagoras atau perbandingan cos atau sin karena AC dan BC sudah diketahui. Disini saya menggunakan phytagoras Maka:

Lihat video untuk contoh 7



Perbandingan Trigonometri Contoh 7

CONTOH 8:
Diberikan ∆ABC sama sisi dengan a=b=c=20 cm. Tentukan semua perbandingan trigonometri sudut A
JAWAB :

Buatlah segitiga ABC yang sudah diketahui panjang sisinya

Tarik garis dari titik C sehingga membentuk siku-siku di tengah garis AB, sehingga :

maka perbandingan trigonometri sudut A adalah :

Lihat video untuk contoh 8



Perbandingan Trigonometri Contoh 8

CONTOH 9:

Hitunglah sin 24o, jika diketahui sin 66o = 0,9

JAWAB :

Buat segitiga siku-siku untuk nilai perbandingan trigonometri pada soal.

sin 66o = 0,9 maka perbandingannya seperti diatas. √19 didapat dari hasil phytagoras

maka,

Komentar

Postingan populer dari blog ini

PEMBAHASAN SOAL SIMAK UI 2020

Nomor 1 : Diketahui x 1 dan x 2 dengan x 1 <x 2 adalah akar-akar persamaan kuadrat ax 2 +bx+c=0. Jika x 1 +x 2 =3 dan , maka persamaan kuadrat baru yang jumlah akarnya  (-x 1 ) x2 +(x 2 ) -x1 dan hasil kali akarnya -x 1 x2 .x 2 -x1 adalah …. JAWAB : B VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 Persamaan Kuadrat No 1 No. 2 Jika  dan  memenuhi , maka nilai x 1 .x 2 adalah …. A. 6 B. 7 C. 8 D. 9 E.10 JAWAB : C Matematika dasar Simak UI 2020 Logaritma Eksponen No 2 No. 3 Diketahui f(x)+3g -1 (x)=x 2 +x-18 dan f(x)+2g -1 (x)=x 2 -18. Jika f -1 bernilai positif, maka g -1 (2)+f -1 (2)=…. A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : B Simak UI 2020 Matematika Dasar Fungsi Invers No 3 No. 4 A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : A VIDEO PEMBAHASAN Simak UI 2020 Matematika dasar Determinan Matriks No 4 No. 5 A. 2 B. 3 C. 4 D. 5 E. 6 JAWAB : E VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 akar Eksponen No 5 Diketahui

Persamaan Garis Singgung Dan Garis Normal

Persamaan garis singgung dan garis normal adalah, garis singgung merupakan garis yang menyinggung kurva di satu titik dan garis normal adalah garis yang tegak lurus dengan garis singgung di titik yang sama dengan garis singgung pada kurva. Untuk lebih jelasnya lihat gambar kurva garis singgung dan garis normal dibawah ini. garis singgung dan garis normal Perhatikan kurva diatas, garis g menyinggung kurvaf(x)= a x 2 + b x+ c di titik A(x,y) dan garis normal n adalah garis yang tegak lurus dengan garis singgung g . Jika gradien garis g adalah m g = m , maka gradien garis normal yang tegak lurus dengan garis g adalah Maka persamaan garis singgung kurva menggunakan persamaan y-y 1 =m g (x-x 1 ) dan persamaan garis normalnya adalah y-y 1 =m n (x-x 1 ) CONTOH 1: Carilah persamaan garis singgung dan garis normal kurva f(x)=x 2 +4x+5 melalui titik x=1 JAWAB : Cari gradien m garis singgung kurva, sebagai berikut : f(x)=x 2 +4x+5 m = f’(x) = 2x + 4 m = 2.1 + 4 = 6 M

Gradien Garis Singgung Pada Kurva Dengan Turunan

Mencari Gradien Menggunakan Turunan untuk mencari gradien pada persaman linier bisa menggunakan rumus y = mx + C , maka gradiennya adalah m . Bagaimana jika gradien yang dicari berasal dari fungsi kuadrat , suku banyak (polinomial), fungsi akar atau fungsi pecahan ? Cara mencari gradien tersebut adalah menggunakan turunan pertama dari suatu fungsi. Bagaimana caranya? marikita lihat penjelasan berikut ini. Gradien Garis Singgung CONTOH 1: Carilah gradien garis singgung dari fungsi y = 3x 2 – 4x + 1 pada x = 1 Carilah gradien garis singgung dari fungsi y = x 3 – 2x 2 pada absis 3 JAWAB : 3. Carilah gradien garis singgung dari fungsi y=√(x+2) dengan ordinat 2 JAWAB : Lihat video untuk contoh 1                 Mencari gradien pada kurva dengan turunan contoh 1 CONTOH 2: 1. Gradien garis singgung kurva y=x 2 +kx+5 pada absis -1 adalah 2. Tentukan nilai k JA