Langsung ke konten utama

PERSAMAAN MUTLAK

PERSAMAAN MUTLAK

Setelah mempelajari nilai mutlak berlanjut ke persamaan mutlak. Banyak syarat yang harus dipahami untuk menyelesaikan soal persamaan mutlak dan itu wajib diketahui. Pembahasan soal di materi ini saya sajikan bertahap dari yang persamaan utlak sederhana sampai persamaan mutlak yang rumit. Tetapi jika kamu pelajari secara bertahap dari materi yang akan saya berikan insya Allah kamu bisa menyelesaikan berbagai bentuk persamaan mulak.

Mari kita coba dengan contoh sederhana dibawah ini.

CONTOH 1 :

  1. Tentukan nilai x dari persamaan mutlak berikut :

a. |2x| = 3

b. |x - 4| = 8

c. |2x + 6| = 12

d. |3x + 4| = |2x - 1|

e. |x + 2| = 3|x + 4|

JAWAB :

Lihat video untuk Persamaan Mutlak contoh 1



persamaan mutlak contoh 1

CONTOH 2 :

  1. Tentukan nilai x dari persamaan mutlak berikut :

a. |4x| + 5 = 13

b. |x + 2| = 3x

c. |4x + 9| / |2x + 1) = 2

d. |x + 4| = - 7

JAWAB :

d. |x + 4| = - 7

Karena ruas kanan bernilai negatif maka tidak ada penyelesaian untuk x

Lihat Video untuk contoh 2



Persamaan mutlak contoh 2

CONTOH 3 :

  1. Tentukan penyelesaian persamaan |x + 5|2 - 2|x + 5| - 3 =0

JAWAB :

Karena ruas kanan bernilai negatif maka tidak ada penyelesaian untuk |x+5| = -1
Jadi penyelesaian persamaan mutlaknya adalah x = - 8, atau x = - 2

Lihat video untuk contoh 3



Persamaan mutlak contoh 3

CONTOH 4 :

  1. Tentukan penyelesaian persamaan |2x + 1| - |x + 3| = 4

JAWAB :

Maka diketahui himpunan penyelesaiannya dibatasi oleh x = - 1/2 dan x = - 3.
Kemungkinan 1 :
Untuk x <- 3persamaan yang digunakan adalah pers(2) dan pers (4), sehingga :

x = -2 tidak memenuhi interval Untuk x <- 3

Kemungkinan 2 :

Untuk -3≤x<-1/2 persamaan yang digunakan adalah pers(2) dan pers (3), sehingga :

Kemungkinan 3 :
Untuk x≥-1/2 persamaan yang digunakan adalah pers(1) dan pers (3), sehingga :

Jadi nilai x yang memenuhi adalah x = - 8/3 atau x = 6

Lihat Video untuk contoh 4



Persamaan Mutlak contoh 4

CONTOH 5 :

  1. Tentukan penyelesaian persamaan |2x + 4| + x = 2.
    JAWAB :

Mutlak mempunyai sifat :

Sehingga kemungkinannya adalah :
Kemungkinan 1

Untuk x≥-2, persamaan mutlaknya menjadi,

Kemungkinan 2
Untuk x<-2, persamaan mutlaknya menjadi,

Lihat video untuk contoh 5



Persamaan Mutlak contoh 5

Komentar

Postingan populer dari blog ini

SOAL dan PEMBAHASAN Persamaan Parabola-Ulangan Harian Tipe 1

Persamaan parabola adalah bagian dari kerucut yang diiris (irisan kerucut) yang salah satu hasil irisannya membentuk persamaan parabola. artikel kali ini saya akan membahas soal-soal yang sering keluar saat ulangan harian di sekolah beserta video penjelasannya yang terdiri dari 15 soal. Soal pembahasan persamaan parabola dibahas dengan konsep yang mudah dimengerti, jadi saya harapkan simak semua soal yang saya berikan dan pelajari perlahan-lahan agar kamu bisa dengan mudah menghadapi ulangan harian disekolah. so, langsung disimaqk aja ya pembahasan soalnya. 1. Persamaan parabola yang mempunyai focus (2,0) adalah …. A. x^2=8y B. x^2=-8y C. y^2=8y D. y^2=-8y E. x^2=4y JAWAB : C 2. Persamaan parabola yang mempunyai focus (0,-2) adalah …. A. x 2 =8y B. x 2 =-8y C. y 2 =8y D. y 2 =-8y E. x 2 =4y JAWAB : B 3. Persamaan parabola dibawah ini adalah… persamaan parabola A. x 2 =12y B. x 2 =-12y C. y 2 =12y D. y 2 =-12y E. x 2 =9y ...

Penerapan Aturan Sinus Dan Cosinus

Aplikasi penerapan rumus aturan sinus dan kosinus dalam kehidupan sehari-hari banyak dipakai dalam dunia kelautan, seperti menghitung jarak kapal jika diketahui sudut antara kapal atau mencari sudut antara dua kapal jika diketahui jarak masing-masing kapal. Berikut ini saya sajikan contoh soal aplikasi aturan sinus dan kosinus. CONTOH 1: Dua kapal A dan B meninggalkan pelabuhan P bersama-sama. Kapal A berlayar dengan arah 030 o dan kecepatan 30 km/jam, sedangkan kapal B berlayar dengan arah 090 o dan kecepatan 45 km/jam. Jika kedua kapal berlayar selama 2 jam, maka jarak kedua kapal tersebut adalah? JAWAB : buatlah gambar lintasan kapal tersebut dengan jarak, kecepatan kapal dan sudut yang diketahui pada soal Jarak PA = vA.t = 30 ×2 = 60 km Jarak PB = vB.t = 45 ×2 = 90 km α=∠APB=90 o – 30 o = 60 o Gunakan aturan cosinus untuk mencari jarak AB Sebuah kapal berlayar dari pelabuhan A ke pelabuhan B sejauh 40 mil dengan arah 30o dan kemudian berpu...

CARA CEPAT HIMPUNAN-MATEMATIKA KUANTITATIF

DIAGRAM VENN Diagram venn digunakan untuk mempermudah suatu himpunan dikelompokkan, berikut adalah berbagai macam operasi himpunan menggunakan diagram venn sebagai materi dasar untuk menyelesaikan soal matematika kuantitatif. Diagram Venn Dua Himpunan a. A∩B b. A∪B c. B - A d. A - B e. (A∪B)-(A∩B) f. A c CONTOH SOAL Daerah yang diarsir pada diagram venn berikut adalah A. A∩B∩C B. A∪B∪C C. (B∩C)∪A D. (B∩C)-A E. A-(B∩C)' JAWAB : D 2. Daerah yang diarsir pada diagram venn berikut adalah .... A. (A∩C)-B B. A∪B∪C C. (B∩C)∪A’ D. (A∩B)-C E. (A∩C)-B JAWAB : E 3. Daerah yang diarsir pada diagram venn berikut adalah A. (A∩B)-C B. A-B-C C. (B∩C)∪A’ D. B-(A∩B E. B-A-C JAWAB : D 4. Daerah yang diarsir pada diagram venn berikut adalah .... A. (A∩B)-C B. A-B-C C. B-(A∩B) D. B-(A∪B) E. B-A-C JAWAB : E 5. Daerah yang diarsir pada diagram venn berikut adalah.... A. (A∩B)-C ...