Langsung ke konten utama

PERSAMAAN MUTLAK

PERSAMAAN MUTLAK

Setelah mempelajari nilai mutlak berlanjut ke persamaan mutlak. Banyak syarat yang harus dipahami untuk menyelesaikan soal persamaan mutlak dan itu wajib diketahui. Pembahasan soal di materi ini saya sajikan bertahap dari yang persamaan utlak sederhana sampai persamaan mutlak yang rumit. Tetapi jika kamu pelajari secara bertahap dari materi yang akan saya berikan insya Allah kamu bisa menyelesaikan berbagai bentuk persamaan mulak.

Mari kita coba dengan contoh sederhana dibawah ini.

CONTOH 1 :

  1. Tentukan nilai x dari persamaan mutlak berikut :

a. |2x| = 3

b. |x - 4| = 8

c. |2x + 6| = 12

d. |3x + 4| = |2x - 1|

e. |x + 2| = 3|x + 4|

JAWAB :

Lihat video untuk Persamaan Mutlak contoh 1



persamaan mutlak contoh 1

CONTOH 2 :

  1. Tentukan nilai x dari persamaan mutlak berikut :

a. |4x| + 5 = 13

b. |x + 2| = 3x

c. |4x + 9| / |2x + 1) = 2

d. |x + 4| = - 7

JAWAB :

d. |x + 4| = - 7

Karena ruas kanan bernilai negatif maka tidak ada penyelesaian untuk x

Lihat Video untuk contoh 2



Persamaan mutlak contoh 2

CONTOH 3 :

  1. Tentukan penyelesaian persamaan |x + 5|2 - 2|x + 5| - 3 =0

JAWAB :

Karena ruas kanan bernilai negatif maka tidak ada penyelesaian untuk |x+5| = -1
Jadi penyelesaian persamaan mutlaknya adalah x = - 8, atau x = - 2

Lihat video untuk contoh 3



Persamaan mutlak contoh 3

CONTOH 4 :

  1. Tentukan penyelesaian persamaan |2x + 1| - |x + 3| = 4

JAWAB :

Maka diketahui himpunan penyelesaiannya dibatasi oleh x = - 1/2 dan x = - 3.
Kemungkinan 1 :
Untuk x <- 3persamaan yang digunakan adalah pers(2) dan pers (4), sehingga :

x = -2 tidak memenuhi interval Untuk x <- 3

Kemungkinan 2 :

Untuk -3≤x<-1/2 persamaan yang digunakan adalah pers(2) dan pers (3), sehingga :

Kemungkinan 3 :
Untuk x≥-1/2 persamaan yang digunakan adalah pers(1) dan pers (3), sehingga :

Jadi nilai x yang memenuhi adalah x = - 8/3 atau x = 6

Lihat Video untuk contoh 4



Persamaan Mutlak contoh 4

CONTOH 5 :

  1. Tentukan penyelesaian persamaan |2x + 4| + x = 2.
    JAWAB :

Mutlak mempunyai sifat :

Sehingga kemungkinannya adalah :
Kemungkinan 1

Untuk x≥-2, persamaan mutlaknya menjadi,

Kemungkinan 2
Untuk x<-2, persamaan mutlaknya menjadi,

Lihat video untuk contoh 5



Persamaan Mutlak contoh 5

Komentar

Postingan populer dari blog ini

FUNGSI INVERS

Fungsi Invers Jika fungsi f:A→B, dangan f={(x,y)|y=f(x),x∈A,y∈B}, maka relasi g:B→A, dengan g=(y,x)|x=g(x),x∈A,y∈B} dinamakan invers fungsi f ditulis f -1 Jika f -1 merupakan fungsi, maka f -1 dinamakan fungsi invers dan jika f -1 bukan merupakan fungsi maka f -1 dinamakan invers f. Jika g ada, g dinyatakan dengan f -1 , sehingga f -1 (y)=x↔f(x)=y. Rumus Cepat Invers : CONTOH 1: Nyatakan invers dari fungsi f dalam himpunan pasangan terurut f = { (1, 3), (2, 5), (3, 7) } JAWAB : Untuk fungsi invers domain (x) ditukar menjadi kodomain (y), sehingga invers fungsi f adalah : f -1 = {(3, 1), (5, 2), (7, 5)} 2. Tentukan invers dari fungsi dibawah ini : JAWAB : *Lihat cara cepatnya divideo 3. Tentukan invers dari fungsi dibawah ini : JAWAB : Lihat Video untuk fungsi invers contoh 1 Cara Cepat Fungsi Invers Contoh 1 CONTOH 2: Tentukan invers dari fungsi : a. f(x) = ...

Gradien Garis Singgung Pada Kurva Dengan Turunan

Mencari Gradien Menggunakan Turunan untuk mencari gradien pada persaman linier bisa menggunakan rumus y = mx + C , maka gradiennya adalah m . Bagaimana jika gradien yang dicari berasal dari fungsi kuadrat , suku banyak (polinomial), fungsi akar atau fungsi pecahan ? Cara mencari gradien tersebut adalah menggunakan turunan pertama dari suatu fungsi. Bagaimana caranya? marikita lihat penjelasan berikut ini. Gradien Garis Singgung CONTOH 1: Carilah gradien garis singgung dari fungsi y = 3x 2 – 4x + 1 pada x = 1 Carilah gradien garis singgung dari fungsi y = x 3 – 2x 2 pada absis 3 JAWAB : 3. Carilah gradien garis singgung dari fungsi y=√(x+2) dengan ordinat 2 JAWAB : Lihat video untuk contoh 1                 Mencari gradien pada kurva dengan turunan contoh 1 CONTOH 2: 1. Gradien garis singgung kurva y=x 2 +kx+5 pada...

Soal dan Pembahasan Vektor- Ulangan Harian Tipe 1

Pembahasan soal vektor kali ini terdiri atas 20 soal, kamu bisa lihat soal dibawah atau langsung simak video penjelasannya Soal dan Pembahasan Vektor Tipe soal vektor yang disajikan sangat variatif dan menggunakan indikator soal vektor yang sering keluar atau diujikan. Berikut indikator materi vektor SMA yang disajikan pada soal : Konsep dasar arah vektor menjumlahkan vektor panjang vektor perbandingan vektor vektor segaris (kolinier) vektor satuan sudut antara dua vektor proyeksi vektor ortogonal Proyeksi skalar vektor ortogonal Mari kita lihat soal apa saja yang bisa kamu selesaikan dan kamu pelajari Ulangan Harian Vektor Tipe 1 SOAL 1 Perhatikan gambar dibawah ini Maka vektor a + c + b - e = ... A. -d B. 2d C. d D. -2d E. 0 JAWAB : B SOAL 2 Diberikan vektor u =2i +3j , v =i -j . Nilai dari 2u +3v =⋯. A. 7i +3j B. 7i +9j C. 3i -3j D. 3i +9j E. 4i +6j JAWAB : A SOAL 3 Diketahui titik A(4, - 1), B(2, 5). jar...