Langsung ke konten utama

Soal dan Pembahasan Suku Banyak-Tipe 1

Soal dan Pembahasan Suku banyak/Polinomial lengkap dengan tutorial video pembahasan. Soal berjumlah 20 butir pilihan ganda dengan indikator : mencari nilai suku banyak,kesamaan suku banyak, mencari hasil bagi dan sisa, teorema sisa, mencari akar-akar suku banyak, soal cerita suku banyak yang berhubungan dengan akar- akarnya.

Soal-soal pembahasan suku banyak bisa kamu langsung lihat video dibawah ini :



soal dan pembahasan suku banyak/polinomial

atau kalau kamu mau latihan dulu untuk menguji pengetahuan kamu boleh simak soal dibawah ini dan kunci jawaban ada di akhir soal.

*Note : semua soal dibuat secara mandiri oleh gulam halim, jika ada kesalahan jawaban atau soal silahkan tulis di komentar

SOAL 1

Diketahui suku banyak f(x)=x3-2x2+4x-5. Nilai f(2)=⋯.
A. 3
B. – 1
C. – 3
D. 13
E. 5

SOAL 2

Diberikan kesamaan suku banyak :

(2x2+4x+6)/(x3+2x2-x-2)≡A/(x2-1)+B/(x+2)
Nilai A + B = ….
A. 2
B. 4
C. 6
D. -2
E. 0

SOAL 3

Hasil bagi dan sisa suku banyak f(x)=x3+3x2-4x+1 oleh x+4 adalah ….
A. x2+x dan 2
B. x2-2x dan 1
C. x2+x+1 dan 1
D. x2-x dan 1
E. x2+x dan 4

SOAL 4

Sisa pembagian suku banyak f(x)=2x3+x2-ax+5 oleh x+1 adalah 7. Nilai dari 4a adalah ….
A. 4
B. 7
C. 12
D. – 4
E. – 16

SOAL 5

Hasil bagi dan sisa suku banyak f(x)=x4+x3-3 oleh x2+x+1 adalah ….
A. x2+x-1 dan x-1
B. x2-1 dan 2x+1
C. x2-1 dan x-2
D. x2-1 dan x+2
E. x2+1 dan x+1

SOAL 6

Jika suku banyak f(x)=x3-ax2+bx-1 dibagi x-1 dan x+1 masing-masing menghasilkan sisa – 3 dan – 7 . Nilai a + b = ….
A. – 4
B. – 3
C. – 2
D. – 1
E. 5

SOAL 7

Suku banyak f(x)=x4+5x3+ax2-bx-24 habis dibagi oleh x2+5x+6. Maka nilai a4-b adalah ….
A. 1
B. 2
C. 4
D. – 6
E. – 4

SOAL 8

Suku banyak f(x)=ax3+9x2+bx-4 habis dibagi oleh x+4 dan bersisa 10 jika dibagi oleh x+2. Maka nilai a dan b adalah ….
A. 2 dan 3
B. 2 dan – 3
C. 2 dan – 2
D. – 3 dan 2
E. 3 dan 2

SOAL 9

Suku banyak f(x) dibagi oleh x+3 dan x-1 masing-masing bersisa 6 dan 2. Sisa pembagian jika f(x) dibagi oleh x2+2x-3 adalah ….
A. 7x-9
B. -x+3
C. x-3
D. 7x+3
E. -7x-9

SOAL 10

Suku banyak f(x) dibagi oleh x-3 dan x+2 masing-masing bersisa x+17 dan x-8. Sisa pembagian jika f(x) dibagi oleh x2-x-6 adalah ….
A. 6x+2
B. 3x-4
C. -6x+8
D. -3x+4
E. -3x-4

SOAL 11

Suku banyak f(x) dibagi oleh x2-1 dan x2-4 masing-masing bersisa 5 dan -1. Sisa pembagian jika f(x) dibagi oleh x2+x-2 adalah ….
A. x+3
B. -2x-7
C. -2x+7
D. 2x-3
E. 2x+3

SOAL 12

Suku banyak f(x) dibagi oleh x-1 dan x-2 masing-masing bersisa 1 dan 3. Suku banyak g(x) dibagi oleh x-1 dan x-2 masing-masing bersisa -2 dan 10 . Sisa pembagian jika f(x).g(x)+1 dibagi oleh x^2-3x+2 adalah ….
A. 32x+33
B. x-2
C. 2x-1
D. 32x-33
E. 33x-32

SOAL 13

Akar- akar dari suku banyak f(x)=x3+4x2+x-6 adalah ….
A. { 1, - 1, 3 }
B. { - 1, 1, 3 }
C. { - 1, - 2, 3 }
D. { 1, - 2, - 3 }
E. { 1, - 2, 3 }

SOAL 14

Akar- akar dari suku banyak f(x)=x4+5x3-2x2-24x adalah ….
A. { 0, - 2, - 3, 4 }
B. { 0, 2, - 3, 4 }
C. { 0, 2, 3, 4 }
D. { 0, 2, - 3, - 4 }
E. { 0, - 2, 3, 4 }

SOAL 15

Salah satu akar dari suku banyak f(x)=2x3+3x2+bx+3 adalah – 3. Akar- akar yang lain adalah ….
A. { 2, 0 }
B. { -2, 1 }
C. { 1/2, -1 }
D. { 1/2, 1 }
E. { - 1/2, 1 }

SOAL 16

Diketahui suku banyak f(x)=x3-mx2-9x+9 salah satu akarnya berlawanan akar lainnya. Nilai x1+x2+x3= ….
A. 6
B. 4
C. 3
D. 2
E. - 1

SOAL 17

Diketahui suku banyak f(x)=x3+2x2-4x+3 mempunyai akar-akar x1, x2, dan x3. Nilai 1/x1 +1/x2 +1/x3 = ….
A. 4/3
B. – 4/3
C. 3/4
D. – ¾
E. 1

SOAL 18

Diketahui suku banyak f(x)=2x4-4x3+x2-4x+6 mempunyai akar-akar x1, x2, x3, dan x4. Nilai x12+x22+x32+x42 = ….
A. 3
B. 2
C. – 3
D. – 2
E. – 4

SOAL 19

Perkembangbiakan suatu bakteri dirumuskan oleh fungsi f(t)=t3+t2-t-1 . Jika t dalam menit , jumlah bakteri menjadi 144 pada menit ke…..
A. 3
B. 4
C. 5
D. 6
E. 7

SOAL 20

Suatu balok mempunyai ukuran panjang (5x+2)cm, lebar 3x cm, dan tinggi (3x-2) cm. Jika volume balok tersebut adalah 288 cm3. Luas permukaan balok adalah …. cm2
A. 36
B. 72
C. 144
D. 160
E. 288

HOME

KUNCI JAWABAN

JAWABAN

1A6E11E16D
2C7E12D17A
3D8A13D18D
4C9B14B19C
5C10A15D20E

Komentar

Postingan populer dari blog ini

PEMBAHASAN SOAL SIMAK UI 2020

Nomor 1 : Diketahui x 1 dan x 2 dengan x 1 <x 2 adalah akar-akar persamaan kuadrat ax 2 +bx+c=0. Jika x 1 +x 2 =3 dan , maka persamaan kuadrat baru yang jumlah akarnya  (-x 1 ) x2 +(x 2 ) -x1 dan hasil kali akarnya -x 1 x2 .x 2 -x1 adalah …. JAWAB : B VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 Persamaan Kuadrat No 1 No. 2 Jika  dan  memenuhi , maka nilai x 1 .x 2 adalah …. A. 6 B. 7 C. 8 D. 9 E.10 JAWAB : C Matematika dasar Simak UI 2020 Logaritma Eksponen No 2 No. 3 Diketahui f(x)+3g -1 (x)=x 2 +x-18 dan f(x)+2g -1 (x)=x 2 -18. Jika f -1 bernilai positif, maka g -1 (2)+f -1 (2)=…. A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : B Simak UI 2020 Matematika Dasar Fungsi Invers No 3 No. 4 A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : A VIDEO PEMBAHASAN Simak UI 2020 Matematika dasar Determinan Matriks No 4 No. 5 A. 2 B. 3 C. 4 D. 5 E. 6 JAWAB : E VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 akar Ekspone...

PEMBAHASAN SOAL UTBK MATEMATIKA SAINTEK 2021

Assalamualaikum sudah taukah kamu soal Matematika Saintek 2021 materinya apa aja ?. Soal dan Pembahasan Matematika Saintek UTBK 2021 terdiri dari materi , Baris deret aritmetika, Persamaan Logaritma, Persamaan Eksponen,Bunga Majemuk, Trigonometri, Transformasi Geometri, Limit Trigonometri, Fungsi, Vektor, Dimensi 3. Mudah-mudahan tetap semangat ya dan konsisten belajar untuk persiapan UTBK selanjutnya. semua tergantung sama diri kalian sendiri apakah kamu mau bekerja keras atau hanya menggerutu kesulitan. Selalu persiapkan untuk menghadapi soal UTBK SBMPTN 2021 karena kita tidak tahu tipe soal apa yang akan keluar dan materi apa yang akan di keluarkan, tetapi perinsip dasar dan konsep materinya tetap sama oleh karena itu belajarlah dengan konsep, jangan menghafal rumus. Berikut saya sajikan soal dan pembahasan menggunakan video tutorial. pelajari secara perlahan, jangan terburu-buru untuk memahami. Jika tidak mengerti lihat materi matematika dasar yang saya sajikan di blog ini...

PELUANG DISKRIT

RUMUS PELUANG DISKRIT rumus peluang diskrit Keterangan : x = banyaknya kejadian n = ruang sampel p = peluang kejadian CONTOH 1 , no. 1 Peluang seorang bayi tertular penyakit disuatu desa adalah 0,1. Jika terdapat 5 bayi. Berapakah peluang 2 bayi akan tertular ? JAWAB : Misal peluang bayi tertular p = 0,1, maka peluang bayi tidak tertular adalah q = 1 – 0,1 = 0,9. Sehingga : Jadi peluang 2 bayi yang tertular adalah 0,0729 Lihat Video Contoh 1 no. 1 peluang diskrit contoh 1 no 1 CONTOH 1, No. 2 Kepala bagian produksi PT LUMINBOX melaporkan bahwa rata - rata produksi lampu LED yang rusak setiap kali produksi adalah sebesar 20 %. Jika dari total produksi tersebut diambil secara acak sebanyak 4 buah lampu LED, berapakah perhitungan dengan nilai probabilitas 2 lampu LED rusak ? JAWAB : Menggunakan Binom Misal lampu peluang lampu rusak p = 20 % = 0,2, maka peluang lampu tidak rusak adalah q = 1 – 0,2 = 0,8. Sehingga : Lihat Video Penjela...