Langsung ke konten utama

Nilai Balik Maksimum Dan Nilai Balik Minimum

 

Berikut ini adalah contoh soal dan pembahasan untuk mencari nilai balik maksimum dan nilai balik minimum

CONTOH 1:
Dengan menggunakan uji turunan pertama tentukanlah nilai balik maksimum atau nilai balik minimum dari setiap fungsi berikut ini :
a. f(x)=10+8x-2x2
b. f(x)=x2+7x+10
c. f(x)=1/3 x3-3/2 x2-18x+3
JAWAB :
a. f(x)=10+8x-2x2
Turunan pertama dari fungsi f(x)=10+8x-2x2 adalah f' (x)=-4x+8 .
Tiitik stasioner fungsi f dicapai bila f' (x)=0 , maka

Nilai stasionernya f(2)=10+8(2)-2(2)2=18
Karena haya ada satu nilai x dan nilai stasionernya positif 18 maka dapat disimpulkan pada x=2 fungsi f(x) mencapai nilai balik maksimum dan nilai balik maksimum itu adalah f(2)=18

b. f(x)=x2+7x+10

Turunan pertama dari fungsi f(x)=x2+7x+10 adalah f' (x)=2x+7 .
Tiitik stasioner fungsi f dicapai bila f'(x)=0 , maka

Nilai stasioner untuk x=-7/2 adalah :

Karena haya ada satu nilai x dan nilai stasionernya negatif (-9/4) maka dapat disimpulkan pada x=-7/2 fungsi f(x) mencapai nilai balik minimum dan nilai balik minimum itu adalah f(-7/2)=-9/4

c. f(x)=1/3 x^3-3/2 x^2-18x+3

Turunan pertama dari fungsi f(x)=1/3 x3-3/2 x2-18x+3 adalahf^' (x)=x2-3x-18 .
Tiitik stasioner fungsi f dicapai bila f' (x)=0 , maka :

Nilai-nilai stasionernya untuk x=6 atau x=-3 adalah :

Karena ada lebih dari satu nilai x maka nilai balik maksimumnya adalah yang bernilai positif f(-3)=69/2 dan nilai balik minimumnya adalah yang bernilai negatif f(6)=-87

Lihat Video untuk contoh 1

https://youtu.be/nEGOq2KdiLE
NILAI BALIK MAKSIMUM MINIMUM CONTOH 1

NILAI BALIK MAKSIMUM MINIMUM PADA INTERVAL

CONTOH 1:
Carilah nilai maksimum dan minimum fungsi f(x)=-x2+x+12 pada interval -2<x<0
JAWAB :
Turunan pertama dari f(x)=-x2+x+12 adalah f^' (x)=-2x+1 .
Titik stasioner fungsi f dicapai bila f' (x)=0 , maka
-2x+1= 0
x=1/2

Nilai stasionernya adalah f(1/2)=-(1/2 )2+(1/2)+12=49/4
Dengan uji turunan pertama dapat diketahui bahwa f(1/2)=49/4 merupakan titik balik maksimum fungsi f
Pada selang -2<x<0 tidak ada nilai balik maksimum, sebab nilai balik maksimum terjadi pada x=1/2
Mencari fungsi f(x)=-x2+x+12 pada ujung-ujung selang -2<x<0
x=-2→f(-2)=-(-2)2+(-2)+12=6
x=0→f(0)=-(0)2+(0)+12=12
Ditulis 6≤f(x)≤12
Dapat disimpulkan nilai fungsi f terbesar adalah 12 dan terkecil adalah 6, jadi fungsi f(x)=-x2+x+12 pada selang-2<x<0 mencapai nilai maksimum 12 dan minimum 6, ditulis 6≤f(x)≤12

  1. Carilah nilai maksimum dan minimum fungsi f(x)=-x2+x+12 pada selang [-1,1]
    JAWAB :
    Turunan pertama dari f(x)=-x2+x+12 adalah f' (x)=-2x+1 .
    Titik stasioner fungsi f dicapai bila f' (x)=0 , maka
    -2x+1= 0
    x=1/2

Komentar

Postingan populer dari blog ini

PEMBAHASAN SOAL SIMAK UI 2020

Nomor 1 : Diketahui x 1 dan x 2 dengan x 1 <x 2 adalah akar-akar persamaan kuadrat ax 2 +bx+c=0. Jika x 1 +x 2 =3 dan , maka persamaan kuadrat baru yang jumlah akarnya  (-x 1 ) x2 +(x 2 ) -x1 dan hasil kali akarnya -x 1 x2 .x 2 -x1 adalah …. JAWAB : B VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 Persamaan Kuadrat No 1 No. 2 Jika  dan  memenuhi , maka nilai x 1 .x 2 adalah …. A. 6 B. 7 C. 8 D. 9 E.10 JAWAB : C Matematika dasar Simak UI 2020 Logaritma Eksponen No 2 No. 3 Diketahui f(x)+3g -1 (x)=x 2 +x-18 dan f(x)+2g -1 (x)=x 2 -18. Jika f -1 bernilai positif, maka g -1 (2)+f -1 (2)=…. A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : B Simak UI 2020 Matematika Dasar Fungsi Invers No 3 No. 4 A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : A VIDEO PEMBAHASAN Simak UI 2020 Matematika dasar Determinan Matriks No 4 No. 5 A. 2 B. 3 C. 4 D. 5 E. 6 JAWAB : E VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 akar Eksponen No 5 Diketahui

Persamaan Garis Singgung Dan Garis Normal

Persamaan garis singgung dan garis normal adalah, garis singgung merupakan garis yang menyinggung kurva di satu titik dan garis normal adalah garis yang tegak lurus dengan garis singgung di titik yang sama dengan garis singgung pada kurva. Untuk lebih jelasnya lihat gambar kurva garis singgung dan garis normal dibawah ini. garis singgung dan garis normal Perhatikan kurva diatas, garis g menyinggung kurvaf(x)= a x 2 + b x+ c di titik A(x,y) dan garis normal n adalah garis yang tegak lurus dengan garis singgung g . Jika gradien garis g adalah m g = m , maka gradien garis normal yang tegak lurus dengan garis g adalah Maka persamaan garis singgung kurva menggunakan persamaan y-y 1 =m g (x-x 1 ) dan persamaan garis normalnya adalah y-y 1 =m n (x-x 1 ) CONTOH 1: Carilah persamaan garis singgung dan garis normal kurva f(x)=x 2 +4x+5 melalui titik x=1 JAWAB : Cari gradien m garis singgung kurva, sebagai berikut : f(x)=x 2 +4x+5 m = f’(x) = 2x + 4 m = 2.1 + 4 = 6 M

Gradien Garis Singgung Pada Kurva Dengan Turunan

Mencari Gradien Menggunakan Turunan untuk mencari gradien pada persaman linier bisa menggunakan rumus y = mx + C , maka gradiennya adalah m . Bagaimana jika gradien yang dicari berasal dari fungsi kuadrat , suku banyak (polinomial), fungsi akar atau fungsi pecahan ? Cara mencari gradien tersebut adalah menggunakan turunan pertama dari suatu fungsi. Bagaimana caranya? marikita lihat penjelasan berikut ini. Gradien Garis Singgung CONTOH 1: Carilah gradien garis singgung dari fungsi y = 3x 2 – 4x + 1 pada x = 1 Carilah gradien garis singgung dari fungsi y = x 3 – 2x 2 pada absis 3 JAWAB : 3. Carilah gradien garis singgung dari fungsi y=√(x+2) dengan ordinat 2 JAWAB : Lihat video untuk contoh 1                 Mencari gradien pada kurva dengan turunan contoh 1 CONTOH 2: 1. Gradien garis singgung kurva y=x 2 +kx+5 pada absis -1 adalah 2. Tentukan nilai k JA