Langsung ke konten utama

Soal dan Pembahasan Limit Aljabar-Tipe 1

Semangaaat....ayo belajar limit dari soal-soal pembahasan limit bentuk aljabar yang saya buat ya. ini adalah tipe soal limit yang sering keluar terdiri dari 15 soal, dibahas menggunakan video tutorial.

Indikator soal terdiri dari : limit aljabar metode substitusi, limit aljabar metode pemfaktoran, limit aljabar metode kali sekawan, limit aljabar bentuk akar dan soal aplikasi limit dikehidupan sehari-hari.

kalau kamu mau lihat penjelasannya langsung simak video dibawah ini



kalau kamu mau latihan dulu silahkan selesaikan soal dibawah ini dan kunci jawaban ada di akhir sioal yah

SOAL LIMIT NO 1

SOAL LIMIT NO 2

SOAL LIMIT NO 3

SOAL LIMIT NO 4

SOAL LIMIT NO 5

SOAL LIMIT NO 6

SOAL LIMIT NO 7

SOAL LIMIT NO 8

SOAL LIMIT NO 9

Jika fungsi f(x)=-x2+4, dan fungsi g(x)=x-2.


A. – 4
B. 4
C. – 2
D. 2
E. 0

SOAL LIMIT NO 10

SOAL LIMIT NO 11

Sebuah mobil balap bergerak dengan kecepatan sesaat yang dirumuskan dengan v(t)=3t2-30 dengan v(t) dalam meter dan t dalam detik. Kecepatan mobil tersebut Jika t mendekati 4 detik adalah ....m/detik
A. 3
B. 6
C. 9
D. 18
E. 20

SOAL LIMIT NO 12

Jika nilai ,

maka nilai a+b adalah ….
A. 3
B. – 3
C. 7
D. -7
E. 0

SOAL LIMIT NO 13

SOAL LIMIT NO 14

SOAL LIMIT NO 15

JAWABAN
1B6E11D
2A7D12C
3D8E13B
4C9A14E
5B10B15 

Komentar

Postingan populer dari blog ini

PEMBAHASAN SOAL SIMAK UI 2020

Nomor 1 : Diketahui x 1 dan x 2 dengan x 1 <x 2 adalah akar-akar persamaan kuadrat ax 2 +bx+c=0. Jika x 1 +x 2 =3 dan , maka persamaan kuadrat baru yang jumlah akarnya  (-x 1 ) x2 +(x 2 ) -x1 dan hasil kali akarnya -x 1 x2 .x 2 -x1 adalah …. JAWAB : B VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 Persamaan Kuadrat No 1 No. 2 Jika  dan  memenuhi , maka nilai x 1 .x 2 adalah …. A. 6 B. 7 C. 8 D. 9 E.10 JAWAB : C Matematika dasar Simak UI 2020 Logaritma Eksponen No 2 No. 3 Diketahui f(x)+3g -1 (x)=x 2 +x-18 dan f(x)+2g -1 (x)=x 2 -18. Jika f -1 bernilai positif, maka g -1 (2)+f -1 (2)=…. A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : B Simak UI 2020 Matematika Dasar Fungsi Invers No 3 No. 4 A. 1 B. 2 C. 3 D. 4 E. 5 JAWAB : A VIDEO PEMBAHASAN Simak UI 2020 Matematika dasar Determinan Matriks No 4 No. 5 A. 2 B. 3 C. 4 D. 5 E. 6 JAWAB : E VIDEO PEMBAHASAN Matematika dasar Simak UI 2020 akar Eksponen No 5 Diketahui

Persamaan Garis Singgung Dan Garis Normal

Persamaan garis singgung dan garis normal adalah, garis singgung merupakan garis yang menyinggung kurva di satu titik dan garis normal adalah garis yang tegak lurus dengan garis singgung di titik yang sama dengan garis singgung pada kurva. Untuk lebih jelasnya lihat gambar kurva garis singgung dan garis normal dibawah ini. garis singgung dan garis normal Perhatikan kurva diatas, garis g menyinggung kurvaf(x)= a x 2 + b x+ c di titik A(x,y) dan garis normal n adalah garis yang tegak lurus dengan garis singgung g . Jika gradien garis g adalah m g = m , maka gradien garis normal yang tegak lurus dengan garis g adalah Maka persamaan garis singgung kurva menggunakan persamaan y-y 1 =m g (x-x 1 ) dan persamaan garis normalnya adalah y-y 1 =m n (x-x 1 ) CONTOH 1: Carilah persamaan garis singgung dan garis normal kurva f(x)=x 2 +4x+5 melalui titik x=1 JAWAB : Cari gradien m garis singgung kurva, sebagai berikut : f(x)=x 2 +4x+5 m = f’(x) = 2x + 4 m = 2.1 + 4 = 6 M

Gradien Garis Singgung Pada Kurva Dengan Turunan

Mencari Gradien Menggunakan Turunan untuk mencari gradien pada persaman linier bisa menggunakan rumus y = mx + C , maka gradiennya adalah m . Bagaimana jika gradien yang dicari berasal dari fungsi kuadrat , suku banyak (polinomial), fungsi akar atau fungsi pecahan ? Cara mencari gradien tersebut adalah menggunakan turunan pertama dari suatu fungsi. Bagaimana caranya? marikita lihat penjelasan berikut ini. Gradien Garis Singgung CONTOH 1: Carilah gradien garis singgung dari fungsi y = 3x 2 – 4x + 1 pada x = 1 Carilah gradien garis singgung dari fungsi y = x 3 – 2x 2 pada absis 3 JAWAB : 3. Carilah gradien garis singgung dari fungsi y=√(x+2) dengan ordinat 2 JAWAB : Lihat video untuk contoh 1                 Mencari gradien pada kurva dengan turunan contoh 1 CONTOH 2: 1. Gradien garis singgung kurva y=x 2 +kx+5 pada absis -1 adalah 2. Tentukan nilai k JA