Langsung ke konten utama

TURUNAN KE-N FUNGSI TRIGONOMETRI

Turunan ke-n/Turunan Tingkat Tinggi

Turunan ke-n adalah turunan tingkat tinggi. Yang kita bahas kali ini adalah turunan tingkat tinggi bentuk fungsi trigonometri. 

Sebelumnya kita harus mengenal notasi turunan ke-n, misalnya :

Turunan ke-2 biasanya ditulis y” atau f”(x) atau

Turunan ke-3 biasanya ditulis y’” atau f’”(x) atau

Dan seterusnya...

Agar lebih mudah memahami, simak contoh penyelesaian turunan tingkat tingginya.

Agar lebih mudah memahami, simak contoh penyelesaian turunan tingkat tingginya.
CONTOH 1 :
1. Tentukan turunan ke-2 dari fungsi trigonometri berikut :
a. f(x)=sin⁡x
b. f(x)=cos2 3x
c. f(x)=sec⁡2x
2. Tentukan turunan ke-3 dari fungsi trigonometri berikut :
a. f(x)=cos⁡x
b. f(x)=tan⁡(2x-30o )+tan⁡45o

JAWAB :

  1. Tentukan turunan ke-2 dari fungsi berikut :

2. Tentukan turunan ke-3 dari fungsi berikut :

Lihat Video untuk CONTOH 1 :



Turunan ke N fungsi trigonometri

Komentar

Postingan populer dari blog ini

CARA CEPAT HIMPUNAN-MATEMATIKA KUANTITATIF

DIAGRAM VENN Diagram venn digunakan untuk mempermudah suatu himpunan dikelompokkan, berikut adalah berbagai macam operasi himpunan menggunakan diagram venn sebagai materi dasar untuk menyelesaikan soal matematika kuantitatif. Diagram Venn Dua Himpunan a. A∩B b. A∪B c. B - A d. A - B e. (A∪B)-(A∩B) f. A c CONTOH SOAL Daerah yang diarsir pada diagram venn berikut adalah A. A∩B∩C B. A∪B∪C C. (B∩C)∪A D. (B∩C)-A E. A-(B∩C)' JAWAB : D 2. Daerah yang diarsir pada diagram venn berikut adalah .... A. (A∩C)-B B. A∪B∪C C. (B∩C)∪A’ D. (A∩B)-C E. (A∩C)-B JAWAB : E 3. Daerah yang diarsir pada diagram venn berikut adalah A. (A∩B)-C B. A-B-C C. (B∩C)∪A’ D. B-(A∩B E. B-A-C JAWAB : D 4. Daerah yang diarsir pada diagram venn berikut adalah .... A. (A∩B)-C B. A-B-C C. B-(A∩B) D. B-(A∪B) E. B-A-C JAWAB : E 5. Daerah yang diarsir pada diagram venn berikut adalah.... A. (A∩B)-C ...

LIMIT METODE PEMFAKTORAN

LIMIT METODE PEMFAKTORAN Setelah kita memahami limit metode substitusi berikutnya kita akan menyelesaikan limit metode pemfaktoran. syarat limit metode pemfaktoran ini, bentuk limitnya harus 0/0 sehingga jika difaktorkan fungsi diatas atau dibawah akan menghasilkan limit yang terdefinisi. Sesuai dengan metodenya, yaitu pemfaktoran, kita harus mahir dalam memfaktorkan suatu fungsi, baik fungsi bentuk persamaan kuadrat,bentuk akar, bentuk eksponen bahkan hingga bentuk polinomial. Jika kurang mahir dalam pemfaktoran tentu akan kesulitan dalam menyelesaikan soal limit aljabar. Tapi jangan kuatir divideo yang saya sajikan akan mempermudah kalian dalam memfaktorkan suatu fungsi, jadi jangan lupa yah videonya di tonton. baik, mari kita lihat contoh dibawah ini. contoh 1 yang diberikan masih tergolong mudah, dalam arti bentuk pemfaktorannya masih sederhana untuk merangsang kalian agar lebih semangat dalam menyelesaikan soal limit aljabar CONTOH 1: Hitunglah limit berikut : ...

Soal dan Pembahasan Vektor- Ulangan Harian Tipe 1

Pembahasan soal vektor kali ini terdiri atas 20 soal, kamu bisa lihat soal dibawah atau langsung simak video penjelasannya Soal dan Pembahasan Vektor Tipe soal vektor yang disajikan sangat variatif dan menggunakan indikator soal vektor yang sering keluar atau diujikan. Berikut indikator materi vektor SMA yang disajikan pada soal : Konsep dasar arah vektor menjumlahkan vektor panjang vektor perbandingan vektor vektor segaris (kolinier) vektor satuan sudut antara dua vektor proyeksi vektor ortogonal Proyeksi skalar vektor ortogonal Mari kita lihat soal apa saja yang bisa kamu selesaikan dan kamu pelajari Ulangan Harian Vektor Tipe 1 SOAL 1 Perhatikan gambar dibawah ini Maka vektor a + c + b - e = ... A. -d B. 2d C. d D. -2d E. 0 JAWAB : B SOAL 2 Diberikan vektor u =2i +3j , v =i -j . Nilai dari 2u +3v =⋯. A. 7i +3j B. 7i +9j C. 3i -3j D. 3i +9j E. 4i +6j JAWAB : A SOAL 3 Diketahui titik A(4, - 1), B(2, 5). jar...